Closing the loop: development of real-time, personalized brain stimulation
闭环:开发实时、个性化的大脑刺激
基本信息
- 批准号:10318564
- 负责人:
- 金额:$ 39.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-18 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAmericanAntidepressive AgentsAwardBase of the BrainBayesian learningBiological MarkersBook ChaptersBrainBrain MappingClinicalClinical ResearchClinical TrialsCollaborationsComputer ModelsControlled Clinical TrialsDepartment chairDevelopmentDisciplineDoseDouble-Blind MethodElectroencephalographyEngineeringEnrollmentEventFDA approvedFrequenciesGoalsGrantHealth Services AccessibilityHumanHuman ResourcesIncubatorsIndividualInternationalInterventionLaboratoriesLegal patentLengthMapsMeasuresMental DepressionMental disordersMentorsMindModalityModelingMonitorMorphologic artifactsNeurologistNeurosurgeonObsessive-Compulsive DisorderOutcomeParietalPatientsPatternPhysiologic pulsePlacebo ControlPlacebosPopulationPositioning AttributePost-Traumatic Stress DisordersPublicationsPublishingRandomized Clinical TrialsReportingResearchResidenciesRiskSecureSeveritiesSignal TransductionStudentsSupervisionSystemTechniquesTestingTimeUpdateWorkbasebiomarker developmentbrain circuitrybrain dysfunctionclinical predictorsdepressed patientdesigndiagnostic platformeffective therapyimprovedindividualized medicineinnovationinstructorjournal articlelecturesneural networkneuroimaging markerneuropsychiatric disorderplacebo controlled studyprimary outcomeprofessorreal time monitoringrepetitive transcranial magnetic stimulationresponseside effectsubstance usetenure tracktime usetooltranslational neurosciencetreatment optimizationtreatment responderstreatment stratification
项目摘要
Project Summary
We are in critical need of targeted and individualized treatments for mental health disorders, which affect
nearly 50% of Americans during our lifetimes. Brain stimulation treatments, including repetitive transcranial
magnetic stimulation (rTMS), represent the front-line of innovative approaches to correct dysfunctional brain
networks for patients suffering from mental illness. rTMS is FDA-approved for depression and obsessive-
compulsive disorder (OCD) with clinical trials underway for post-traumatic stress disorder (PTSD) and substance
use, among others. However, as currently administered, rTMS lacks a biomarker to individually optimize
treatment and thus suffers from a poor clinical response rate (<50%). Without personalization of rTMS, we risk
a one-size-fits-all treatment for all psychiatric disorders, not dissimilar to how antidepressants are administered.
Using simultaneous TMS and electroencephalography (TMS-EEG), I identified a depression severity
biomarker from a double-blind randomized clinical trial treating depressed patients with one month of active or
placebo rTMS. The degree of this biomarker change significantly predicted clinical improvement after rTMS
treatment. Direct brain recordings further suggest that a single stimulation session is sufficient to modulate this
biomarker, indicating that this brain-based biomarker can be monitored daily to support empiric treatment
optimization.
With this in mind, I propose to develop the first broadly generalizable platform for real-time biomarker
monitoring (Aim #1) and personalized rTMS treatment (Aims #2 & 3). I will enroll 54 depressed patients to
participate in a cross-over, placebo-controlled study directly comparing personalized, adaptive rTMS to standard
rTMS. Primary outcome will be target engagement and dose-response of the depression severity biomarker.
Successful implementation of this work includes the early stratification of treatment responders and personalized
and more effective treatments for non-responders. This approach is broadly applicable to other depression
biomarkers, all psychiatric populations treated with rTMS, and other brain stimulation modalities. More generally,
my goals are to establish the fundamental principles of human brain plasticity and to construct platforms for rapid
biomarker development, engagement, and integration into personalized brain stimulation treatments.
项目摘要
我们迫切需要有针对性的个性化治疗精神健康障碍,
近50%的美国人在我们的有生之年。脑刺激治疗,包括重复经颅
磁刺激(rTMS)代表了纠正大脑功能障碍的创新方法的前沿
为精神病患者建立的网络。rTMS是FDA批准的抑郁症和强迫症-
强迫症(OCD)与临床试验正在进行的创伤后应激障碍(PTSD)和物质
使用,除其他外。然而,正如目前管理的,rTMS缺乏生物标志物来单独优化
治疗,因此具有较差的临床反应率(<50%)。如果没有个性化的rTMS,
一种适用于所有精神疾病的通用治疗方法,与抗抑郁药的使用方式没有什么不同。
使用同时TMS和脑电图(TMS-EEG),我确定了抑郁症的严重程度,
来自一项双盲随机临床试验的生物标志物,该试验治疗抑郁症患者,
安慰剂rTMS。该生物标志物的变化程度显著预测了rTMS后的临床改善
治疗直接的大脑记录进一步表明,一个单一的刺激会话是足以调节这一点,
生物标志物,表明这种基于大脑的生物标志物可以每天监测,以支持经验性治疗
优化.
考虑到这一点,我建议开发第一个广泛通用的实时生物标志物平台。
监测(目标1)和个性化rTMS治疗(目标2和3)。我将招募54名抑郁症患者
参与一项交叉、安慰剂对照研究,直接比较个性化、自适应rTMS与标准rTMS
rTMS。主要结局将是抑郁症严重程度生物标志物的靶向参与和剂量反应。
这项工作的成功实施包括治疗反应者的早期分层和个性化
以及对无反应者更有效的治疗方法。这种方法广泛适用于其他抑郁症
生物标志物,所有接受rTMS治疗的精神病人群和其他脑刺激方式。更一般地说,
我的目标是建立人类大脑可塑性的基本原则,并构建快速发展的平台。
生物标志物开发、参与和整合到个性化脑刺激治疗中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Corey J Keller其他文献
Corey J Keller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Corey J Keller', 18)}}的其他基金
CRCNS US-France Research Proposal: Probing the Dorsolateral Prefrontal Cortex and Central Executive Network for Improving Neuromodulation in Depression
CRCNS 美法研究提案:探索背外侧前额叶皮层和中央执行网络以改善抑郁症的神经调节
- 批准号:
10612989 - 财政年份:2022
- 资助金额:
$ 39.13万 - 项目类别:
CRCNS US-France Research Proposal: Probing the Dorsolateral Prefrontal Cortex and Central Executive Network for Improving Neuromodulation in Depression
CRCNS 美法研究提案:探索背外侧前额叶皮层和中央执行网络以改善抑郁症的神经调节
- 批准号:
10561527 - 财政年份:2022
- 资助金额:
$ 39.13万 - 项目类别:
Closing the loop: development of real-time, personalized brain stimulation
闭环:开发实时、个性化的大脑刺激
- 批准号:
10020446 - 财政年份:2019
- 资助金额:
$ 39.13万 - 项目类别:
Closing the loop: development of real-time, personalized brain stimulation
闭环:开发实时、个性化的大脑刺激
- 批准号:
10556323 - 财政年份:2019
- 资助金额:
$ 39.13万 - 项目类别:
Closing the loop: development of real-time, personalized brain stimulation
闭环:开发实时、个性化的大脑刺激
- 批准号:
9794069 - 财政年份:2019
- 资助金额:
$ 39.13万 - 项目类别:
Localizing functional and pathological networks in epilepsy
定位癫痫的功能和病理网络
- 批准号:
8398072 - 财政年份:2012
- 资助金额:
$ 39.13万 - 项目类别:
Localizing functional and pathological networks in epilepsy
定位癫痫的功能和病理网络
- 批准号:
8550546 - 财政年份:2012
- 资助金额:
$ 39.13万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 39.13万 - 项目类别:
Continuing Grant