3D Super-Resolution Ultrasound Imaging for Cancer Detection and Treatment Monitoring

用于癌症检测和治疗监测的 3D 超分辨率超声成像

基本信息

  • 批准号:
    10318580
  • 负责人:
  • 金额:
    $ 34.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Neoadjuvant chemotherapy is the standard of care for treatment of locally advanced breast cancer, which is a major clinical issue. Access to inexpensive and noninvasive methods to determine early treatment response are essential to determine if a chosen anticancer therapeutic regimen is efficacious. Tumor angiogenesis is a key biomarker of breast cancer growth and metastasis. This tumor microvascularity is known to exhibit distinct perfusion characteristics and morphologic features during the early stages of breast tumor development which fundamentally change during a positive response to neoadjuvant treatment. The overarching goal of this research project is to develop an innovative three-dimensional (3D) super-resolution (SR-US) imaging system and new image processing solutions to considerably improve our ability to perform in vivo quantitative analysis of tumor angiogenic networks. The first aim of this project involves optimization of 3D SR-US imaging functionality on a programmable US scanner equipped with a custom 1024-element (32 x 32) matrix array transducer. The second aim involves the development of new open-source SR-US image processing software for performing motion correction and quantitative analysis of tumor perfusion and microvascular morphology features in 3D space. In the third aim, we will evaluate the use of angiogenic biomarkers extracted from 3D SR- US images as a quantitative basis for distinguishing healthy from diseased tissue volumes in a transgenic animal model of breast cancer. We will also assess the use of in vivo 3D SR-US imaging for detection of early tumor response to neoadjuvant treatment using the same animal model.
项目总结 新辅助化疗是治疗局部晚期乳腺癌的标准护理,这是一种 主要的临床问题。获得确定早期治疗反应的廉价和非侵入性方法的途径是 对于确定选定的抗癌治疗方案是否有效至关重要。肿瘤血管生成是关键 乳腺癌生长和转移的生物标志物。已知的肿瘤微血管显示出明显的 乳腺肿瘤发生早期的血流灌注特征和形态特征 在对新辅助治疗的积极反应期间发生根本性变化。这件事的首要目标是 研究项目是开发一种创新的三维(3D)超分辨率(SR-US)成像系统 和新的图像处理解决方案,显著提高我们进行活体定量分析的能力 肿瘤血管生成网络。该项目的第一个目标是优化3D SR-US成像 配备定制1024元素(32 X 32)矩阵阵列的可编程US扫描仪的功能 换能器。第二个目标是开发新的开源SR-US图像处理软件 用于执行肿瘤血流和微血管形态的运动校正和定量分析 3D空间中的要素。在第三个目标中,我们将评估从3D SR中提取的血管生成生物标记物的使用。 超声图像作为区分转基因动物健康组织体积和病变组织体积的定量基础 乳腺癌的模型。我们还将评估活体3D SR-US成像在早期肿瘤检测中的应用 使用相同的动物模型对新辅助治疗的反应。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluation of Nonlinear Contrast Pulse Sequencing for Use in Super-Resolution Ultrasound Imaging.
Multifocused Ultrasound Therapy for Controlled Microvascular Permeabilization and Improved Drug Delivery.
Photoacoustic graphic equalization and application in characterization of red blood cell aggregates.
  • DOI:
    10.1016/j.pacs.2022.100365
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Basavarajappa, Lokesh;Hoyt, Kenneth
  • 通讯作者:
    Hoyt, Kenneth
Disease-Specific Imaging Utilizing Support Vector Machine Classification of H-Scan Parameters: Assessment of Steatosis in a Rat Model.
Multiparametric ultrasound imaging for the assessment of normal versus steatotic livers.
  • DOI:
    10.1038/s41598-021-82153-z
  • 发表时间:
    2021-01-29
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Basavarajappa L;Baek J;Reddy S;Song J;Tai H;Rijal G;Parker KJ;Hoyt K
  • 通讯作者:
    Hoyt K
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Hoyt其他文献

Kenneth Hoyt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth Hoyt', 18)}}的其他基金

Remote Intravascular Pressure Sensing using Ultrasound
使用超声波进行远程血管内压力传感
  • 批准号:
    10648240
  • 财政年份:
    2023
  • 资助金额:
    $ 34.43万
  • 项目类别:
Multifrequency ultrasound imaging for improved breast tissue characterization
多频超声成像可改善乳腺组织特征
  • 批准号:
    10904411
  • 财政年份:
    2022
  • 资助金额:
    $ 34.43万
  • 项目类别:
Multifrequency ultrasound imaging for improved breast tissue characterization
多频超声成像可改善乳腺组织特征
  • 批准号:
    10530983
  • 财政年份:
    2022
  • 资助金额:
    $ 34.43万
  • 项目类别:
Multiparametric ultrasound imaging for early detection of nonalcoholic fatty liver disease
多参数超声成像用于早期检测非酒精性脂肪肝
  • 批准号:
    10320337
  • 财政年份:
    2020
  • 资助金额:
    $ 34.43万
  • 项目类别:
Multiparametric ultrasound imaging for early detection of nonalcoholic fatty liver disease
多参数超声成像用于早期检测非酒精性脂肪肝
  • 批准号:
    10532168
  • 财政年份:
    2020
  • 资助金额:
    $ 34.43万
  • 项目类别:
Multiparametric ultrasound imaging for early detection of nonalcoholic fatty liver disease
多参数超声成像用于早期检测非酒精性脂肪肝
  • 批准号:
    10094699
  • 财政年份:
    2020
  • 资助金额:
    $ 34.43万
  • 项目类别:
Noninvasive Pressure Estimation in Breast Cancer using Ultrasound
使用超声波对乳腺癌进行无创压力估计
  • 批准号:
    9225468
  • 财政年份:
    2017
  • 资助金额:
    $ 34.43万
  • 项目类别:
Molecular Ultrasound Imaging of Cancer Response to Antiangiogenic Therapy
癌症抗血管生成治疗反应的分子超声成像
  • 批准号:
    8698828
  • 财政年份:
    2014
  • 资助金额:
    $ 34.43万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 34.43万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 34.43万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 34.43万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 34.43万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 34.43万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 34.43万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 34.43万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 34.43万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 34.43万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.43万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了