Dynamic prediction of heart failure using real-time functional status and EHR data in the ambulatory setting

在门诊环境中使用实时功能状态和 EHR 数据动态预测心力衰竭

基本信息

项目摘要

Project Summary/Abstract The candidate and principal investigator (PI) Geoffrey Tison, MD, MPH, is an Assistant Professor in the Divi- sion of Cardiology at the University of California, San Francisco. The long-term goal of the PI is to become an independent clinician-investigator with the training necessary to perform technology-leveraged clinical research to both investigate and facilitate cardiovascular disease prevention. Specifically, the training aims of this award will allow the PI to build upon his existing clinical research and data analysis skills to employ machine learning and other technology-based solutions, like mobile health tools, to advance heart failure prevention. The candi- date will complete coursework to develop his skills in machine learning, medical informatics, and clinical trial design and implementation, taking part in the UCSF Medical Informatics Training Program. To achieve these training goals, the candidate has assembled a mentoring team with extensive and complimentary expertise in clinical trials, epidemiology, and technology-enabled research (Dr. Jeff Olgin, the primary mentor, Dr. Mark Pletcher, Dr. Veronique Roger), biomedical/clinical informatics and novel data analysis (Dr. Atul Butte) and heart failure clinical and research expertise (Dr. Liviu Klein, Dr. Veronique Roger, Dr. John Spertus). This pro- ject seeks to take advantage of our current digital medical era to remotely capture individualized up-to-date patient data and predict dynamic risk, addressing the unmet need to improve remote heart failure management and decrease heart failure hospitalization. The project will test and develop tools to predict dynamic heart fail- ure risk based on real-time data measured in a free-living heart failure population—using a novel smartphone- based tool—and from patterns in up-to-date EHR data. The specific aims are: Aim 1–! Examine changes in functional status, measured by serial Self-Administered 6 Minute Walk Test, as a predictor of near-term HF hospitalization. Aim 2–! Develop a “dynamic” heart failure risk model that incorporates four types of up-to-date EHR data as it becomes available—including encounters, medication refills/changes, labs and vital signs. This research is expected to produce two validated methods to estimate dynamic, up-to-date heart failure risk to enable the provision of earlier, more effective outpatient interventions that decrease hospitalization. This con- tribution has the potential to improve remote management for heart failure patients, while shifting the clinical care paradigm to utilize dynamic, longitudinal and free-living data for clinical decision-making. This award will directly enable a future R01-level randomized pragmatic clinical to trial test the hypothesis that delivery of up- to-date risk information to outpatient clinicians can decrease future HF hospitalizations. This award will provide the PI with a unique combination of skills: a strong clinical background, a rigorous clinical research foundation, advanced analytic skills in machine learning and fluency to utilize health-related technologies to derive insights and deliver preventive interventions.
项目总结/摘要 候选人和首席研究员(PI)杰弗里·蒂森,医学博士,公共卫生硕士,是在Divi助理教授, 加州大学旧金山分校弗朗西斯科心脏病学博士。PI的长期目标是成为 独立的临床医生-研究者,经过必要的培训,以进行技术杠杆临床研究 研究和促进心血管疾病的预防。具体而言,该奖项的培训目标 将允许PI在其现有临床研究和数据分析技能的基础上使用机器学习 以及其他基于技术的解决方案,如移动的健康工具,以促进心力衰竭的预防。坎迪- date将完成课程,以发展他在机器学习,医学信息学和临床试验方面的技能 设计和实施,参加了UCSF医学信息学培训计划。实现这些 培训目标,候选人已经组建了一个指导团队,在以下方面具有广泛的互补专业知识: 临床试验,流行病学和技术支持的研究(杰夫奥尔金博士,主要导师,马克博士 Pletcher,Veronique Roger博士),生物医学/临床信息学和新数据分析(Atul Butte博士),以及 心力衰竭临床和研究专业知识(Liviu Klein博士、Veronique Roger博士、John Spertus博士)。这个亲- ject旨在利用我们当前的数字医疗时代,远程捕获个性化的最新信息, 患者数据和预测动态风险,解决未满足的改善远程心力衰竭管理的需求 并减少心力衰竭住院率。该项目将测试和开发预测动态心力衰竭的工具- 基于自由生活心力衰竭人群中测量的实时数据的风险-使用新型智能手机- 基于工具和最新EHR数据中的模式。具体目标是:目标1-!检查 功能状态,通过连续自我管理6分钟步行试验测量,作为近期HF的预测因子 住院瞄准2-!开发一个"动态"心力衰竭风险模型,该模型包含四种最新的 EHR数据,因为它变得可用-包括遭遇,药物补充/变化,实验室和生命体征。这 研究预计将产生两种有效的方法来估计动态的,最新的心力衰竭风险, 能够提供更早、更有效的门诊干预措施,减少住院。这个骗局 物联网有可能改善心力衰竭患者的远程管理,同时改变临床 护理范例利用动态,纵向和自由生活的数据进行临床决策。这个奖项将 直接使未来的R01级随机化实用临床试验测试的假设,提供了- 向门诊医生提供最新的风险信息可以减少未来的HF住院治疗。该奖项将提供 PI具有独特的技能组合:强大的临床背景,严谨的临床研究基础, 先进的机器学习分析技能和流畅性,以利用健康相关技术来获得见解 并采取预防性干预措施。

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifying Mitral Valve Prolapse at Risk for Arrhythmias and Fibrosis From Electrocardiograms Using Deep Learning.
使用深度学习从心电图中识别二尖瓣脱垂是否有心律失常和纤维化的风险。
  • DOI:
    10.1016/j.jacadv.2023.100446
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tison,GeoffreyH;Abreau,Sean;Barrios,Joshua;Lim,LisaJ;Yang,Michelle;Crudo,Valentina;Shah,DipanJ;Nguyen,Thuy;Hu,Gene;Dixit,Shalini;Nah,Gregory;Arya,Farzin;Bibby,Dwight;Lee,Yoojin;Delling,FrancescaN
  • 通讯作者:
    Delling,FrancescaN
CathAI: fully automated coronary angiography interpretation and stenosis estimation.
  • DOI:
    10.1038/s41746-023-00880-1
  • 发表时间:
    2023-08-11
  • 期刊:
  • 影响因子:
    15.2
  • 作者:
  • 通讯作者:
Echocardiographic determination of pulmonary arterial capacitance.
超声心动图测定肺动脉电容。
  • DOI:
    10.1007/s10554-019-01595-9
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Papolos,Alexander;Fan,Eugene;Wagle,RohanR;Foster,Elyse;Boyle,AndrewJ;Yeghiazarians,Yerem;MacGregor,JohnS;Grossman,William;Schiller,NelsonB;Ganz,Peter;Tison,GeoffreyH
  • 通讯作者:
    Tison,GeoffreyH
Patient-Level Artificial Intelligence-Enhanced Electrocardiography in Hypertrophic Cardiomyopathy: Longitudinal Treatment and Clinical Biomarker Correlations.
肥厚型心肌病患者级人工智能增强心电图:纵向治疗和临床生物标志物相关性。
  • DOI:
    10.1016/j.jacadv.2023.100582
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siontis,KonstantinosC;Abreau,Sean;Attia,ZachiI;Barrios,JoshuaP;Dewland,ThomasA;Agarwal,Priyanka;Balasubramanyam,Aarthi;Li,Yunfan;Lester,StevenJ;Masri,Ahmad;Wang,Andrew;Sehnert,AmyJ;Edelberg,JayM;Abraham,TheodoreP;Friedm
  • 通讯作者:
    Friedm
Worldwide physical activity trends since COVID-19 onset.
自COVID-19发作以来,全球体育活动趋势。
  • DOI:
    10.1016/s2214-109x(22)00361-8
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    34.3
  • 作者:
    Tison, Geoffrey H.;Barrios, Joshua;Avram, Robert;Kuhar, Peter;Bostjancic, Bojan;Marcus, Gregory M.;Pletcher, Mark J.;Olgin, Jeffrey E.
  • 通讯作者:
    Olgin, Jeffrey E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Geoffrey H Tison其他文献

Geoffrey H Tison的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Geoffrey H Tison', 18)}}的其他基金

A physiologically-focused approach to training multi-modality AI algorithms in medicine
一种以生理学为中心的医学多模态人工智能算法训练方法
  • 批准号:
    10687584
  • 财政年份:
    2023
  • 资助金额:
    $ 18.47万
  • 项目类别:
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
  • 批准号:
    10683803
  • 财政年份:
    2022
  • 资助金额:
    $ 18.47万
  • 项目类别:

相似海外基金

An innovative, AI-driven prehabilitation platform that increases adherence, enhances post-treatment outcomes by at least 50%, and provides cost savings of 95%.
%20创新、%20AI驱动%20康复%20平台%20%20增加%20依从性、%20增强%20治疗后%20结果%20by%20at%20至少%2050%、%20和%20提供%20成本%20节省%20of%2095%
  • 批准号:
    10057526
  • 财政年份:
    2023
  • 资助金额:
    $ 18.47万
  • 项目类别:
    Grant for R&D
Improving Repositioning Adherence in Home Care: Supporting Pressure Injury Care and Prevention
提高家庭护理中的重新定位依从性:支持压力损伤护理和预防
  • 批准号:
    490105
  • 财政年份:
    2023
  • 资助金额:
    $ 18.47万
  • 项目类别:
    Operating Grants
I-Corps: Medication Adherence System
I-Corps:药物依从性系统
  • 批准号:
    2325465
  • 财政年份:
    2023
  • 资助金额:
    $ 18.47万
  • 项目类别:
    Standard Grant
Unintrusive Pediatric Logging Orthotic Adherence Device: UPLOAD
非侵入式儿科记录矫形器粘附装置:上传
  • 批准号:
    10821172
  • 财政年份:
    2023
  • 资助金额:
    $ 18.47万
  • 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
  • 批准号:
    10766947
  • 财政年份:
    2023
  • 资助金额:
    $ 18.47万
  • 项目类别:
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
  • 批准号:
    10772887
  • 财政年份:
    2023
  • 资助金额:
    $ 18.47万
  • 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
  • 批准号:
    10594350
  • 财政年份:
    2023
  • 资助金额:
    $ 18.47万
  • 项目类别:
Antiretroviral therapy adherence and exploratory proteomics in virally suppressed people with HIV and stroke
病毒抑制的艾滋病毒和中风患者的抗逆转录病毒治疗依从性和探索性蛋白质组学
  • 批准号:
    10748465
  • 财政年份:
    2023
  • 资助金额:
    $ 18.47万
  • 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
  • 批准号:
    10591441
  • 财政年份:
    2023
  • 资助金额:
    $ 18.47万
  • 项目类别:
Development and implementation of peer-facilitated decision-making and referral support to increase uptake and adherence to HIV pre-exposure prophylaxis in African Caribbean and Black communities in Ontario
制定和实施同行协助决策和转介支持,以提高非洲加勒比地区和安大略省黑人社区对艾滋病毒暴露前预防的接受和依从性
  • 批准号:
    491109
  • 财政年份:
    2023
  • 资助金额:
    $ 18.47万
  • 项目类别:
    Fellowship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了