Exploiting convergent evolution to design biomarker extraction tools for the prediction of therapeutic response in cancer
利用趋同进化设计生物标志物提取工具来预测癌症治疗反应
基本信息
- 批准号:10320353
- 负责人:
- 金额:$ 5.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AllyBiological MarkersBiological ModelsCancer cell lineCell LineChronic Myeloid LeukemiaClinicalClinical TreatmentCollectionDataData SetDatabasesDisease ProgressionDrug resistanceEpidermal Growth Factor ReceptorEvolutionGene ExpressionGene Expression ProfileGene Expression ProfilingGenesGenomicsGenotypeGroupingImatinibIndividualInter-tumoral heterogeneityLeadMalignant NeoplasmsMethodsMolecularMolecular ProfilingMutationNetwork-basedNon-Small-Cell Lung CarcinomaOncologyOutcomePatientsPharmaceutical PreparationsPhenotypePhiladelphia ChromosomePrediction of Response to TherapyProcessResearchResearch PersonnelResistanceSamplingSeedsSomatic MutationStochastic ProcessesTestingThe Cancer Genome AtlasTherapeuticTimeTissue-Specific Gene ExpressionWorkbasebcr-abl Fusion Proteinscancer cellcancer gene expressioncancer subtypescancer typechemotherapydesigndifferential expressiondrug sensitivityeffective therapyexperimental studygene productimprovedindividual patientinterestmachine learning modelnovelnovel strategiesopen sourcepersonalized approachpersonalized carepersonalized medicineprecision medicinepressureresponders and non-respondersresponsesuccesstargeted treatmenttherapy resistanttooltreatment planningtreatment responsetumor
项目摘要
PROJECT SUMMARY/ABSTRACT
The effective treatment of drug resistant tumors represents one of the greatest unmet needs in oncology
research. The evolution of therapeutic resistance in cancer is a dynamic process, shaped by many external
forces, including selection pressures, microenvironment, and the timescales of clinical treatments. As tumors
evolve under these heterogeneous settings, a variety of genotypes emerge and lead to large differences in drug
response phenotypes between patients. By grouping tumors based on their response to treatment, we can
exploit principles of convergent evolution, where similar phenotypes evolve independently between individuals. In
doing so, this work aims to aid precision medicine by identifying commonalities between tumors with similar drug
response phenotypes.
Gene expression signatures are a powerful tool that can be used to predict convergent states of drug sensitiv-
ity and resistance. Using vast open-source datasets, Aim 1 of this proposal will demonstrate a novel method for
extracting and validating gene expression signatures to predict therapeutic response in cancer. Cell lines with the
best and worst response to a given drug are pooled and compared using differential gene expression analysis.
Genes with increased expression in a state of sensitivity or resistance become seed genes in a co-expression
network based on gene expression from tumor samples. From there, only seed genes with strong co-expression
within patient samples are extracted to form the final gene expression signature. This novel approach integrates
clinical sample data to the signature extraction method in order to increase translational value compared to molec-
ular signatures extracted using only cell line datasets. Next, Aim 2 of this proposal investigates the phenomenon
of collateral sensitivity, where resistance to one drug aligns with sensitivity to another drug. Because the evo-
lution of collateral resistance and sensitivity can be unpredictable, molecular signatures of convergent states of
collateral sensitivity and resistance could greatly enhance treatment planning once resistance to first-line ther-
apy has evolved. Using EGFR+ non-small cell lung cancer cell lines as a model system, this project aims to
identify molecular signatures of evolutionarily convergent collateral sensitivity/resistance phenotypes during the
experimental evolution of therapeutic resistance to targeted therapies.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica Anne Scarborough其他文献
Jessica Anne Scarborough的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica Anne Scarborough', 18)}}的其他基金
Exploiting convergent evolution to design biomarker extraction tools for the prediction of therapeutic response in cancer
利用趋同进化设计生物标志物提取工具来预测癌症治疗反应
- 批准号:
10543422 - 财政年份:2021
- 资助金额:
$ 5.18万 - 项目类别:
相似海外基金
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10490338 - 财政年份:2021
- 资助金额:
$ 5.18万 - 项目类别:
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10353104 - 财政年份:2021
- 资助金额:
$ 5.18万 - 项目类别:
Investigating pollution dynamics of swimming pool waters by means of chemical and biological markers
利用化学和生物标记物研究游泳池水体的污染动态
- 批准号:
21K04320 - 财政年份:2021
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10688286 - 财政年份:2021
- 资助金额:
$ 5.18万 - 项目类别:
Novel biological markers for immunotherapy and comprehensive genetic analysis in thymic carcinoma
用于胸腺癌免疫治疗和综合遗传分析的新型生物标志物
- 批准号:
20K17755 - 财政年份:2020
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10578649 - 财政年份:2019
- 资助金额:
$ 5.18万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10295141 - 财政年份:2019
- 资助金额:
$ 5.18万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10041708 - 财政年份:2019
- 资助金额:
$ 5.18万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
9776149 - 财政年份:2019
- 资助金额:
$ 5.18万 - 项目类别:
Combining biological and non-biological markers to develop a model predictive of treatment response for individuals with depression
结合生物和非生物标志物来开发预测抑郁症患者治疗反应的模型
- 批准号:
2063934 - 财政年份:2018
- 资助金额:
$ 5.18万 - 项目类别:
Studentship














{{item.name}}会员




