Predicting the multi-omic impact of psychiatric GWAS associations
预测精神病学 GWAS 关联的多组学影响
基本信息
- 批准号:10320945
- 负责人:
- 金额:$ 69.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnorexia NervosaAnteriorAutopsyBiologicalBipolar DisorderBrainBypassCell LineCollectionComplexDataData SetDevelopmentDiseaseEmotionalEtiologyFamilyFinancial HardshipGene ExpressionGenesGeneticGenetic PolymorphismGenetic studyGenotypeGoalsHigh PrevalenceHumanImpairmentLeadMeasuresMental disordersMethodologyMethodsModelingMorbidity - disease rateMultiomic DataNeuronsPharmaceutical PreparationsPrefrontal CortexPublic HealthRegulationResearchResearch PersonnelRiskRoleSample SizeSamplingSchizophreniaStatistical ModelsTestingTherapeutic InterventionTimeTissue BanksTissue SampleTissuesTranslatingUpdateVariantbeta diversitybrain tissuecase controlcell typecingulate cortexdisorder riskeffective therapyepigenomefallsgenome wide association studygenome-widegenomic locusgut microbiotahistone modificationimprovedinduced pluripotent stem cellinnovationinsightmicrobialmicrobial compositionmicrobiomemortalitymultiple omicsnovelpredictive modelingprenatalsample collectionsocialsuccesstraittranscriptometranscriptomics
项目摘要
PROJECT SUMMARY / ABSTRACT
Our understanding of schizophrenia (SCZ), bipolar disorder (BPD) and anorexia nervosa (AN) is
advancing rapidly. We have identified polymorphisms and genes associated with all three disorders, although
AN is still understudied compared to SCZ and BPD. As sample sizes for genome-wide association studies
increase, larger numbers of associated variants will surely be identified, particularly for AN, which is projected to
increase to 50,000 cases from ~3,500 currently, by 2019. However, such studies provide, at best, long lists
of associated loci, which are not easily biologically interpretable. Consequently, we do not yet understand
the key biological mechanisms underlying these diseases, and few effective treatments or medications are
available. Methods that provide insight into the associations from these studies will be vital to furthering our
understanding of disease etiology, and will have substantial public health impacts.
We propose to develop statistical models to translate existing associations from these studies into
biologically relevant information. These models are an innovative approach that capitalize on existing
successful genetic studies. We use large, publicly available ‘multi-omic’ datasets with proven relevance to
SCZ, BPD, and AN (for example brain gene expression, cell-type specific histone modifications, and gut
microbiota) to build powerful multi-omic predictors. These may be used to predict higher-level measures (for
example gene expression) from genotype, and test for association with disease. These types of associations
may lead to increased understanding of underlying biological mechanisms, and opportunities for
development of medications and therapeutic interventions.
In specific aim 1, we will update and improve on our existing brain gene expression prediction models,
using a large collection of post-mortem brain samples from the dorso-lateral pre-frontal cortex and anterior
cingulate cortex. These samples will allow us to build large, well-powered, highly accurate prediction models.
We will apply these models to existing studies of SCZ, BPD, and AN to provide disease-associated genes.
In specific aim 2, we will extend our approach to include prediction of developmental brain gene
expression, and again will apply our models to studies of SCZ, BPD, and AN. These analyses will provide
trajectories of gene expression throughout development, and will identify genes associated with SCZ, BPD
and AN at distinct developmental stages.
In specific aim 3, we will create models predicting cell-type specific histone modifications and gut
microbial composition from genotype, and will apply these to studies of SCZ, BPD, and AN. These analyses
will elucidate the role of specific histone modifications (H3K4me3 and H3K27ac), in neurons and non-neurons,
as well as the role of microbial diversity and specific bacterial species, in SCZ, BPD, and AN.
项目总结/摘要
我们对精神分裂症(SCZ)、双相情感障碍(BPD)和神经性厌食症(AN)的理解是
快速推进。我们已经确定了与这三种疾病相关的多态性和基因,
与SCZ和BPD相比,AN仍然研究不足。作为全基因组关联研究的样本量
增加,更大数量的相关变体肯定会被识别,特别是对于AN,预计
到2019年,从目前的约3,500例增加到50,000例。然而,这些研究充其量提供了一个很长的清单,
相关的基因座,这是不容易生物学解释。因此,我们还不明白
这些疾病的关键生物学机制,以及一些有效的治疗或药物,
available.从这些研究中深入了解相关性的方法对于进一步研究
了解疾病的病因,并将产生重大的公共卫生影响。
我们建议开发统计模型,将这些研究中现有的关联转化为
生物相关信息。这些模式是一种创新的方法,利用现有的
成功的基因研究我们使用大型的、公开可用的“多组学”数据集,这些数据集已被证明与以下内容相关:
SCZ、BPD和AN(例如脑基因表达、细胞类型特异性组蛋白修饰和肠基因修饰)。
微生物群)来构建强大的多组学预测器。这些可以用于预测更高级别的测量(对于
例如基因表达),并测试与疾病的关联。这些类型的协会
可能导致对潜在生物机制的理解增加,
开发药物和治疗干预措施。
在具体目标1中,我们将更新和改进我们现有的大脑基因表达预测模型,
使用大量的死后大脑样本,从背外侧前额叶皮层和前额叶皮层,
扣带皮层这些样本将使我们能够构建大型,功能强大,高度准确的预测模型。
我们将把这些模型应用到SCZ、BPD和AN的现有研究中,以提供疾病相关基因。
在具体目标2中,我们将扩展我们的方法,包括预测发育脑基因
表达,并再次将我们的模型应用于SCZ,BPD和AN的研究。这些分析将提供
轨迹的基因表达在整个发展,并将确定基因与SCZ,BPD
和AN处于不同的发育阶段。
在具体目标3中,我们将创建预测细胞类型特异性组蛋白修饰和肠
微生物组成的基因型,并将这些应用于SCZ,BPD和AN的研究。这些分析
将阐明特定组蛋白修饰(H3 K4 me 3和H3 K27 ac)在神经元和非神经元中的作用,
以及微生物多样性和特定细菌种类在SCZ、BPD和AN中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Marianne Huckins其他文献
Laura Marianne Huckins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Laura Marianne Huckins', 18)}}的其他基金
Predicting the multi-omic impact of psychiatric GWAS associations
预测精神病学 GWAS 关联的多组学影响
- 批准号:
10735004 - 财政年份:2022
- 资助金额:
$ 69.37万 - 项目类别:
Predicting the multi-omic impact of psychiatric GWAS associations
预测精神病学 GWAS 关联的多组学影响
- 批准号:
10061650 - 财政年份:2019
- 资助金额:
$ 69.37万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 69.37万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 69.37万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 69.37万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 69.37万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 69.37万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 69.37万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 69.37万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 69.37万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 69.37万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 69.37万 - 项目类别:
Research Grant