Understanding the regulation of neuron cell number and arbor size
了解神经元细胞数量和乔木大小的调节
基本信息
- 批准号:10327719
- 负责人:
- 金额:$ 14.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultApoptosisBioinformaticsBiologicalBiologyBirthBlindnessBrainBrain InjuriesBrain regionCandidate Disease GeneCell CountCell DeathCell Death InhibitionCell fusionCellsComplexComprehensionDataData SetDevelopmentDrosophila genusEnsureEnvironmentExhibitsEyeFailureGangliaGenerationsGeneticGenetic ProcessesGenetic TranscriptionGoalsImageImaging TechniquesInhibition of ApoptosisKineticsLearningLibrariesLocationLogicMapsMedical centerMemoryMentorshipModelingMolecularMolecular TargetMorphologyMosaicismMutateNerve DegenerationNeurobiologyNeuroepithelialNeurologyNeuronsNeuropeptidesNeuropilNew YorkOptic LobeOpticsPatternPhasePhotoreceptorsPopulationRegenerative MedicineRegulationRetinaRoleSamplingSpecific qualifier valueStructureSystemTestingTimeTo specifyTranscriptTransplantationUniversitiesVisualVisual system structureWorkcell typedevelopmental neurobiologyexperimental studyflygenetic manipulationmachine learning algorithmnerve stem cellnervous system disorderneuroblastneuroepitheliumnoveloverexpressionpreventprogenitorreceptorrelating to nervous systemretinotopicsingle-cell RNA sequencingsomatosensorystem cell divisionstem cell therapytranscription factortranscriptometranscriptome sequencingtwo-photon
项目摘要
PROJECT SUMMARY/ABSTRACT
How the brain generates the correct number of neurons and how these neurons determine the size of their
arbors to innervate the receptor field is a critical question in neurobiology. The Drosophila visual system is hard
wired and iteratively organized into columns, providing an excellent model to answer these questions.
Drosophila medulla multicolumnar neurons exhibit 5 to 750 neurons per cell type; each neuron class
possesses a distinct morphology and projects its arbors across multiple columns in the optic lobe. The host lab
has obtained single-cell RNA sequencing (scRNAseq) data that determined the transcriptome of almost all
optic lobe neuron cell types throughout development.
The first aim of this project is to understand the molecular and cell biological mechanisms that dictate neuron
number. Under the mentorship of Claude Desplan at New York University (K99 phase), I will perform genetics
experiments that decisively address the role of programmed cell death, neural stem cell division number, and
neuroepithelial size of origin in regulating the number of multicolumnar neurons produced. I will also perform
lineage tracing experiments to determine whether molecularly similar cell types are generated at the same
time. With Holger Knaut at NYU Medical Center, I will learn quantitative live imaging techniques to distinguish
whether neural stem cells divide a limited number of times to generate low-abundance neural classes, or
whether cell fusion of immature progenitors drives cell number.
The second aim of this project is to determine the morphological and genetic processes that dictate the size
and orientation of the arbors of multicolumnar to allow them to cover distinct receptor fields. With the
bioinformatics expertise of Itai Yanai at NYU Medical Center, I will perform RNAseq on adult neurons that are
not numerous enough to be identified in our existing scRNAseq data sets. I will then use machine learning
algorithms to identify these neurons during development in our existing scRNAseq libraries and thus identify
candidate genes required for the regulation of neuron number and arbor size (R00 phase). I will combine these
molecular experiments with live imaging to quantitatively characterize how multicolumnar neurons determine
the orientation and size of their arbors. Preliminary data indicates that cell death and the size of neuroepithelial
region of origin in part dictate multicolumnar neuron number; I have also identified a neuropeptide whose
function is essential for the regulation of neuron arbor size. My work will clarify the molecular basis of neuron
abundance and determine how neurons present in small numbers regulate their arbor size to ensure that their
environment is uniformly sampled, a problem common to many brain regions in most species.
项目摘要/摘要
大脑如何产生正确数量的神经元以及这些神经元如何确定其大小
支配受体场的乔木是神经生物学中的关键问题。果蝇视觉系统很难
连线和迭代组织成柱,提供了一个出色的模型来回答这些问题。
果蝇髓质多腹神经元每种细胞的神经元5至750个神经元;每个神经元类
具有独特的形态,并在视位叶中的多个柱上投射了轴承。主机实验室
已经获得了单细胞RNA测序(SCRNASEQ)数据,该数据几乎确定了几乎所有的转录组
整个发育过程中,视位叶神经元细胞类型。
该项目的第一个目的是了解决定神经元的分子和细胞生物学机制
数字。在纽约大学(K99阶段)的Claude Desplan的指导下,我将执行遗传学
果断地解决了程序性细胞死亡,神经干细胞分裂的作用和
在调节产生的多斑点神经元数量时,神经上皮大小。我也会表演
谱系跟踪实验,以确定是否在相同的情况下生成分子相似的细胞类型
时间。在纽约大学医疗中心的Holger Knaut的情况下,我将学习定量实时成像技术以区分
神经干细胞是划分有限的次数以产生低丰度的神经类别还是
未成熟祖细胞的细胞融合是否驱动细胞数。
该项目的第二个目的是确定决定规模的形态和遗传过程
以及多肢体的乔木的方向,以允许它们覆盖不同的受体场。与
纽约大学医学中心的ITAI Yanai的生物信息学专业知识,我将对成人神经元进行RNASEQ
在我们现有的SCRNASEQ数据集中识别的数量不足。然后我将使用机器学习
在我们现有的Scrnaseq库中开发过程中识别这些神经元的算法,从而确定
神经元数和乔木大小(R00期)所需的候选基因。我将结合这些
具有实时成像的分子实验,以定量表征多斑点神经元如何确定
他们的方向盘的方向和大小。初步数据表明细胞死亡和神经上皮的大小
原籍地区部分决定了多壁神经元数;我还确定了一种神经肽
功能对于调节神经乔植物大小至关重要。我的工作将阐明神经元的分子基础
丰度并确定少量神经元如何调节其乔木大小,以确保其
环境均匀地采样,大多数物种中许多大脑区域常见的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer A Malin其他文献
Spatial patterning regulates neuron numbers in the Drosophila visual system
空间模式调节果蝇视觉系统中的神经元数量
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jennifer A Malin;Yen;Félix Simon;Evelyn Keefer;C. Desplan - 通讯作者:
C. Desplan
Jennifer A Malin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer A Malin', 18)}}的其他基金
Deciphering the mechanisms underlying multicolumnar neuron pathfinding and specification in the Drosophila melanogaster optic lobe
破译果蝇视叶多柱神经元寻路和规范的机制
- 批准号:
9769762 - 财政年份:2017
- 资助金额:
$ 14.03万 - 项目类别:
Deciphering the mechanisms underlying multicolumnar neuron pathfinding and specification in the Drosophila melanogaster optic lobe
破译果蝇视叶多柱神经元寻路和规范的机制
- 批准号:
9328455 - 财政年份:2017
- 资助金额:
$ 14.03万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 14.03万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 14.03万 - 项目类别:
Milk fat globule-EGF factor 8 and hepatocyte apoptosis-induced liver wound healing response
乳脂肪球-EGF因子8与肝细胞凋亡诱导的肝脏创面愈合反应
- 批准号:
10585802 - 财政年份:2023
- 资助金额:
$ 14.03万 - 项目类别:
Mitochondrial electron transport dysfunction: Dissecting pathomechanisms
线粒体电子传递功能障碍:剖析病理机制
- 批准号:
10679988 - 财政年份:2023
- 资助金额:
$ 14.03万 - 项目类别: