Dual oxidase and lactoperoxidase in influenza infection
流感感染中的双氧化酶和乳过氧化物酶
基本信息
- 批准号:10328261
- 负责人:
- 金额:$ 37.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-19 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnimal ModelAnionsAntibody titer measurementAntiviral AgentsAttenuatedBiological ModelsBiologyBirdsCell-Free SystemCellsCysteineDataEconomic BurdenEnzymesEpithelial CellsFutureGoalsHemagglutininHumanHydrogen PeroxideImmuneImmune systemImpairmentIn VitroInfluenzaInfluenza A virusInfluenza B VirusInnate Immune ResponseInterventionKnowledgeLeukocytesLinkLiquid substanceLungLung infectionsMeasuresMissionMolecularMolecular Mechanisms of ActionMorbidity - disease rateMouse StrainsMusNADPH OxidaseNatural ImmunityNeuraminidase inhibitorOutcomeOxidasesOxidesParticipantPathogenesisPathogenicityPatientsPersonsProteinsPublic HealthPulmonary InflammationPulmonary PathologyResearchResistanceRoleRouteSourceSystemTestingTherapeuticThiocyanatesUnited States National Institutes of HealthVaccinationViralViral Drug ResistanceVirionVirusVirus DiseasesVirus InactivationVirus ReplicationWorkadaptive immune responseadaptive immunityairway epitheliumairway surface liquidanti-influenzaantimicrobialapical membraneattenuationbasebronchial epitheliumcytokinedesignextracellularfightinghuman diseasehypothiocyaniteimprovedin vitro testingin vivoinfluenza infectioninfluenza virus straininfluenza virus vaccineinfluenzavirusinnate immune mechanismsinnovationlung injurymortalitymouse modelnovelnovel therapeuticspreventrecruitresistant strainresponsevirucideweapons
项目摘要
Project summary description
Influenza virus infections affect millions of people worldwide every year and cause serious mortality.
Current treatment options are limited to viral strain-specific vaccination and are problematic due to antiviral drug
resistance. There is an urgent need to identify novel host innate immune mechanisms providing broad range
protection against influenza. Bronchial epithelial cells orchestrate an oxidative extracellular antimicrobial system
present in the airway surface liquid consisting of the protein lactoperoxidase (LPO), the thiocyanate anion (SCN-
) and hydrogen peroxide (H2O2). LPO oxidizes SCN- using H2O2 into hypothiocyanite (OSCN-) that has known in
vitro antiviral effects. Dual oxidase 1 (Duox1), an NADPH oxidase highly expressed in bronchial epithelial cells,
is the H2O2 source for the system. Our long-term goal is to determine whether the Duox1/H2O2/LPO/SCN-
antiviral system could be manipulated in influenza infection for therapeutic purposes in human patients. The
objective of this proposal is to determine and characterize the antiviral role of Duox1 and LPO against influenza
in multiple experimental systems. Our preliminary data show that 1) primary bronchial epithelial cells inactivate
several influenza viruses in an Duox1/H2O2/LPO/SCN- -dependent manner, 2) Duox1-deficient mice have
increased mortality and morbidity, impaired viral clearance and leukocyte recruitment following influenza
infection in vivo, and 3) the in vitro influenza-inactivating effect of this mechanism can be enhanced to inhibit
influenza infection. Based on these data, our central hypothesis is that the Duox1/H2O2/LPO/SCN- system
attenuates influenza infection, both in vitro and in vivo, and can be boosted to fight influenza. The rationale for
the proposed research is that there is a need to better understand how powerful the antiviral Duox1/LPO-based
system is and how can it be manipulated for therapeutic purposes. The main hypothesis will be tested in cell-
free, airway epithelial and mouse model systems using a wide range of influenza strains. It is anticipated that
our aims will yield several impactful outcomes including 1) detailed description of the anti-influenza mechanism
of action of the Duox1/H2O2/LPO/SCN- system; 2) determination of the in vivo relevance of Duox1 in fighting a
wide range of influenza strains; and 3) exploring the therapeutic potential of the Duox1/H2O2/LPO/SCN- system
to improve influenza clearance and to diminish associated lung damage. Our innovative work shows that the
Duox1/H2O2/LPO/SCN- system inactivates influenza, and uses a Duox1-deficient mouse strain for in vivo studies.
The significance of the outlined work relies in establishing the relevance of a novel innate immune mechanism
of the airways that can be enhanced to attenuate influenza infections or applied in conjunction with influenza
vaccines to potentially enhance efficacy. In summary, our proposed work will have a positive impact in the fields
of airway epithelial biology and antiviral innate immune responses by identifying Duox1 and LPO, as novel,
crucial weapons of the bronchial epithelium against influenza.
项目摘要说明
流感病毒感染每年影响全世界数百万人并导致严重死亡。
目前的治疗选择仅限于病毒株特异性疫苗接种,并且由于抗病毒药物
阻力迫切需要鉴定新的宿主先天免疫机制,从而提供广泛的免疫应答。
预防流感。支气管上皮细胞协调氧化性细胞外抗菌系统
存在于由蛋白质乳过氧化物酶(LPO)、硫氰酸根阴离子(SCN-
)和过氧化氢(H2 O2)。LPO使用H2 O2将SCN-氧化成次硫氰酸盐(OSCN-),
体外抗病毒作用。双氧化酶1(Duox 1),一种在支气管上皮细胞中高度表达的NADPH氧化酶,
是系统的H2 O2源。我们的长期目标是确定Duox 1/H2 O2/LPO/SCN-
可以在流感感染中操纵抗病毒系统,以用于人类患者的治疗目的。的
本提案的目的是确定和表征Duox 1和LPO对流感的抗病毒作用
在多个实验系统中。我们的初步数据表明:1)原代支气管上皮细胞
Duox 1/H2 O2/LPO/SCN-依赖性的方式,2)Duox 1缺陷型小鼠
流感后死亡率和发病率增加,病毒清除和白细胞募集受损
感染的体内,和3)在体外流感灭活效果,这种机制可以增强抑制
流感感染。基于这些数据,我们的中心假设是Duox 1/H2 O2/LPO/SCN-体系
在体外和体内均减弱流感感染,并且可以增强以对抗流感。的理由
拟议的研究是,有必要更好地了解如何强大的抗病毒Duox 1/LPO为基础的
系统是什么,以及如何操纵它以达到治疗目的。主要假设将在细胞中进行测试-
游离的、气道上皮和小鼠模型系统,使用广泛的流感毒株。预计各国
我们的目标将产生几个有影响力的成果,包括1)详细描述抗流感机制
Duox 1/H2 O2/LPO/SCN-系统的作用; 2)确定Duox 1在对抗肿瘤中的体内相关性,
广泛的流感病毒株;和3)探索Duox 1/H2 O2/LPO/SCN系统的治疗潜力
以改善流感清除率并减少相关的肺损伤。我们的创新工作表明,
Duox 1/H2 O2/LPO/SCN-系统灭活流感病毒,并使用Duox 1缺陷小鼠品系进行体内研究。
概述的工作的意义在于建立一种新的先天免疫机制的相关性
可以增强气道以减轻流感感染或与流感联合应用
疫苗,以提高疗效。总之,我们拟议的工作将在各领域产生积极影响,
气道上皮生物学和抗病毒先天免疫反应的研究,通过鉴定Duox 1和LPO,作为新的,
支气管上皮对抗流感的关键武器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Balazs Rada其他文献
Balazs Rada的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Balazs Rada', 18)}}的其他基金
Association of Staphylococcus aureus infection with autoimmunity in cystic fibrosis
金黄色葡萄球菌感染与囊性纤维化自身免疫的关系
- 批准号:
10226644 - 财政年份:2021
- 资助金额:
$ 37.75万 - 项目类别:
Association of Staphylococcus aureus infection with autoimmunity in cystic fibrosis
金黄色葡萄球菌感染与囊性纤维化自身免疫的关系
- 批准号:
10353431 - 财政年份:2021
- 资助金额:
$ 37.75万 - 项目类别:
Dual oxidase and lactoperoxidase in influenza infection
流感感染中的双氧化酶和乳过氧化物酶
- 批准号:
10556348 - 财政年份:2020
- 资助金额:
$ 37.75万 - 项目类别:
Dual oxidase and lactoperoxidase in influenza infection
流感感染中的双氧化酶和乳过氧化物酶
- 批准号:
9981325 - 财政年份:2020
- 资助金额:
$ 37.75万 - 项目类别:
Neutrophil extracellular traps in cystic fibrosis
囊性纤维化中的中性粒细胞胞外陷阱
- 批准号:
10078969 - 财政年份:2018
- 资助金额:
$ 37.75万 - 项目类别:
Neutrophil extracellular traps in cystic fibrosis
囊性纤维化中的中性粒细胞胞外陷阱
- 批准号:
9898433 - 财政年份:2018
- 资助金额:
$ 37.75万 - 项目类别:
Neutrophil Extracellular Traps in Cystic Fibrosis
囊性纤维化中的中性粒细胞胞外陷阱
- 批准号:
9324418 - 财政年份:2016
- 资助金额:
$ 37.75万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 37.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists