Reconstitution and biophysical study of chromosome segregation machinery

染色体分离机制的重建和生物物理研究

基本信息

  • 批准号:
    10326358
  • 负责人:
  • 金额:
    $ 65.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Project summary During cell division, duplicated chromosomes are segregated by an exquisite molecular machine, the mitotic spindle. Our goal is to uncover how this machine operates by reconstituting spindle activities and applying advanced biophysical tools for manipulating and tracking individual molecules. We focus on the components most central to spindle function, kinetochores, microtubules, and spindle poles. Kinetochores drive chromosome movements by maintaining persistent, load-bearing attachments to microtubule tips, even as the tips assemble and disassemble under their grip. Kinetochores also somehow sense when they are erroneously attached and, if so, they detach and generate diffusible ‘wait’ signals to delay anaphase until proper attachments are made. Spindle microtubules are organized into a bipolar configuration by the spindle poles, which also must sustain forces to support chromosome movements and spindle assembly. In past work, we have developed motility assays where native kinetochores or recombinant kinetochore subcomplexes are attached to individual dynamic microtubules. Like kinetochores in vivo, the isolated kinetochore particles remain tip-bound even as the microtubule tips assemble and disassemble – a behavior we call ‘tip-coupling’. We have also reconstituted attachments between microtubules and spindle pole bodies, the yeast counterparts of centrosomes, and made the first measurements of their mechanical strength. Altogether our reconstitutions have enabled us to make key discoveries in major areas of spindle function. By expanding our approach, we can now attack the essence of many complex, long-standing problems in mitosis, in direct ways that would be impossible in living cells. Over the next five years, we will focus on several important questions: (1) How do kinetochores spontaneously self-assemble from their component parts? (2) How are forces transmitted from the outer microtubule-binding interface through the middle of the kinetochore and ultimately to the centromeric DNA? (3) How are dynamic behaviors at kinetochores and spindle poles affected by the forces they experience? (4) How do kinetochores avoid making erroneous attachments? (5) How do unattached or erroneously attached kinetochores generate ‘wait’ signals to delay the cell cycle? Our work will continue to use the advanced, feedback-controlled laser traps that we pioneered for measuring kinetochore movement and spindle pole mechanics. In addition, newly developed fluorescence techniques will allow us to observe kinetochore assembly at the single molecule level and to monitor dynamic structural changes within individual kinetochores. By combining laser trapping with fluorescence we will test directly how changes in the composition and architecture of kinetochores and spindle poles affect their function.
项目摘要 在细胞分裂过程中,复制的染色体被一个精致的分子机器--有丝分裂素--分离。 纺锤体。我们的目标是通过重构主轴活动并应用 先进的生物物理工具来操纵和跟踪单个分子。我们专注于组件 最核心的纺锤体功能,动粒,微管,和纺锤体极。动粒驱动 染色体运动通过维持持久的,承重附件微管提示,即使作为 尖端在其抓握下组装和拆卸。动粒也能以某种方式感觉到它们什么时候 错误地附着,如果是这样,它们会分离并产生可扩散的“等待”信号,以延迟后期, 进行适当的连接。纺锤体微管被纺锤体组织成双极结构 两极,也必须承受力,以支持染色体运动和纺锤体组装。过去 工作,我们已经开发了运动测定,其中天然动粒或重组动粒亚复合物 附着在单独的动态微管上。像体内的动粒一样,分离的动粒颗粒 即使在微管尖端组装和拆卸时也保持尖端结合-我们称之为“尖端耦合”的行为。 我们还重建了微管和纺锤体之间的连接, 并首次测量了它们的机械强度。我们所有的重建 使我们在纺锤体功能的主要领域有了重大发现。通过扩展我们的方法,我们 现在可以直接攻击有丝分裂中许多复杂的、长期存在的问题的本质, 在活细胞中是不可能的未来五年,我们将重点研究几个重要问题:(1)如何 动粒会自发地从它们的组成部分自我组装起来(2)力是如何从 外部微管结合界面穿过着丝粒的中间,并最终到达着丝粒 DNA?(3)动粒和纺锤体极点的动力学行为是如何受到它们所受的力的影响的? 经验?(4)Kinetochores如何避免产生错误的附件?(5)单身或 错误附着的动粒产生“等待”信号来延迟细胞周期?我们的工作将继续使用 先进的,反馈控制的激光陷阱,我们率先测量动粒运动, 主轴杆力学此外,新开发的荧光技术将使我们能够观察 动粒组装在单分子水平,并监测动态结构的变化, 动粒通过将激光捕获与荧光结合,我们将直接测试 着丝粒和纺锤体极的组成和结构影响它们的功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CHARLES ASBURY其他文献

CHARLES ASBURY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CHARLES ASBURY', 18)}}的其他基金

Reconstitution and biophysical study of chromosome segregation machinery
染色体分离机制的重建和生物物理研究
  • 批准号:
    10552592
  • 财政年份:
    2020
  • 资助金额:
    $ 65.74万
  • 项目类别:
Reconstitution and biophysical study of chromosome segregation machinery
染色体分离机制的重建和生物物理研究
  • 批准号:
    10064632
  • 财政年份:
    2020
  • 资助金额:
    $ 65.74万
  • 项目类别:
Multicolor TIRF microscope for studying mitotic spindle components at the single
多色 TIRF 显微镜用于研究单次有丝分裂纺锤体成分
  • 批准号:
    7791455
  • 财政年份:
    2010
  • 资助金额:
    $ 65.74万
  • 项目类别:
Dam1 Kinetochore Complex and Dynamic Microtubules
Dam1 动粒复合体和动态微管
  • 批准号:
    7186769
  • 财政年份:
    2006
  • 资助金额:
    $ 65.74万
  • 项目类别:
Dam1 Kinetochore Complex and Dynamic Microtubules
Dam1 动粒复合体和动态微管
  • 批准号:
    7686858
  • 财政年份:
    2006
  • 资助金额:
    $ 65.74万
  • 项目类别:
Biophysical study of reconstituted kinetochore-microtubule attachments
重建动粒-微管附件的生物物理学研究
  • 批准号:
    8728260
  • 财政年份:
    2006
  • 资助金额:
    $ 65.74万
  • 项目类别:
Biophysical study of reconstituted kinetochore-microtubule attachments
重建动粒-微管附件的生物物理学研究
  • 批准号:
    8537931
  • 财政年份:
    2006
  • 资助金额:
    $ 65.74万
  • 项目类别:
Biophysical study of reconstituted kinetochore-microtubule attachments
重建动粒-微管附件的生物物理学研究
  • 批准号:
    9103625
  • 财政年份:
    2006
  • 资助金额:
    $ 65.74万
  • 项目类别:
Biophysical study of reconstituted kinetochore-microtubule attachments
重建动粒-微管附件的生物物理学研究
  • 批准号:
    8338863
  • 财政年份:
    2006
  • 资助金额:
    $ 65.74万
  • 项目类别:
Dam1 Kinetochore Complex and Dynamic Microtubules
Dam1 动粒复合体和动态微管
  • 批准号:
    7923677
  • 财政年份:
    2006
  • 资助金额:
    $ 65.74万
  • 项目类别:

相似国自然基金

RIF1蛋白在处理超细后期桥(ultrafine anaphase bridge)和保障基因组稳定的作用
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

The Anaphase Promoting Complex/Cyclosome and double-stranded DNA damage in S. cerevisiae
酿酒酵母中的后期促进复合物/环体和双链 DNA 损伤
  • 批准号:
    574890-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 65.74万
  • 项目类别:
    University Undergraduate Student Research Awards
Identification of protein phosphatases required for anaphase onset.
鉴定后期开始所需的蛋白磷酸酶。
  • 批准号:
    575128-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 65.74万
  • 项目类别:
    University Undergraduate Student Research Awards
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
  • 批准号:
    10797668
  • 财政年份:
    2022
  • 资助金额:
    $ 65.74万
  • 项目类别:
Characterization of molecular mechanisms governing budding yeast lifespan using small peptides that interact with the Anaphase Promoting Complex
使用与后期促进复合物相互作用的小肽来表征控制芽殖酵母寿命的分子机制
  • 批准号:
    RGPIN-2017-05478
  • 财政年份:
    2022
  • 资助金额:
    $ 65.74万
  • 项目类别:
    Discovery Grants Program - Individual
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
  • 批准号:
    10345098
  • 财政年份:
    2022
  • 资助金额:
    $ 65.74万
  • 项目类别:
The role of microtubule dynamics in midzone driven chromosome segregation in anaphase
微管动力学在中区驱动的后期染色体分离中的作用
  • 批准号:
    10561625
  • 财政年份:
    2022
  • 资助金额:
    $ 65.74万
  • 项目类别:
Characterization of molecular mechanisms governing budding yeast lifespan using small peptides that interact with the Anaphase Promoting Complex
使用与后期促进复合物相互作用的小肽来表征控制芽殖酵母寿命的分子机制
  • 批准号:
    RGPIN-2017-05478
  • 财政年份:
    2021
  • 资助金额:
    $ 65.74万
  • 项目类别:
    Discovery Grants Program - Individual
Characterization of mitochondrial organization, epigenomic regulation, and the Anaphase Promoting Complex in Progeria-driven premature senescence
早衰症驱动的过早衰老中线粒体组织、表观基因组调控和后期促进复合物的表征
  • 批准号:
    466918
  • 财政年份:
    2021
  • 资助金额:
    $ 65.74万
  • 项目类别:
    Studentship Programs
The Role of the Anaphase Promoting Complex in Breast Cancer Progression
后期促进复合物在乳腺癌进展中的作用
  • 批准号:
    555539-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 65.74万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Unravelling the role of topoisomerase II beta binding protein 1 (TOPBP1) in the resolution of ultra-fine anaphase bridges.
揭示拓扑异构酶 II β 结合蛋白 1 (TOPBP1) 在解析超细后期桥中的作用。
  • 批准号:
    BB/T009608/1
  • 财政年份:
    2020
  • 资助金额:
    $ 65.74万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了