Assisted Identification and Navigation of Early Mental Health Symptoms in Children

儿童早期心理健康症状的辅助识别和导航

基本信息

  • 批准号:
    10330457
  • 负责人:
  • 金额:
    $ 76.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-18 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT About 55% of children with significant mental health difficulties receive treatment and up to 80% of children with sub-clinical symptoms receive no treatment. Treatments are often not initiated until issues are significantly impacting the child and family. This study aims to conduct a pragmatic randomized trial in two non-academic health care systems to test a mental health family navigator model to promote early access to, engagement in, and coordination of needed mental health services for children. The first task of the study will focus on the implementation of a predictive model to identify symptomatic children with no diagnosed mental health disorder(s) or treatments initiated. The tool identifies patients with documentation of mental health symptoms or complaints in the free text of a progress note from a recent primary care or urgent care visit. Using this predictive algorithm, we will conduct a pragmatic randomized trial comparing intervention and usual care arm patients enrolled from Kaiser Permanente (KP) Washington and KP Northern California. The trial will enroll 200 patients per arm (n=400). Children with (1) a new mental health diagnosis but no treatment initiated; (2) a new mental health medication ordered with no mental health diagnosis; and (3) symptoms identified by the predictive model with no new mental health diagnosis or treatment initiated will be recruited. The study intervention will offer 6 months of support to the family by a mental health navigator (social worker). The navigator will perform an initial needs and barriers assessment with the family around mental health services, conduct ongoing motivational interviewing around mental health care, provide up to 4 psychotherapy sessions (when appropriate) via clinic-to-home video visits, help the family find and schedule with appropriate mental health providers in the community, and reach out ad hoc if mental health appointments or medication refills are missed. The primary outcome is the percentage of youth initiating psychotherapy. The secondary outcome is the percentage of youth with at least 4 mental health visits. We hypothesize that the intervention arm will have higher rates of psychotherapy use compared to the control arm. We will also assess initiation of psychotropic medications. All primary analyses will follow an intent-to-treat approach. A waiver of consent will be obtained to include data for all individuals offered the intervention in the analysis, regardless of the amount of intervention (“dose” of navigation) received.
摘要 约55%有严重心理健康问题的儿童接受治疗, 有亚临床症状的人得不到治疗。治疗通常不会开始,直到问题显着 影响孩子和家庭。本研究旨在进行一项实用的随机试验,在两个非学术 卫生保健系统测试心理健康家庭导航员模型,以促进抢先体验,参与, 协调儿童所需的心理健康服务。研究的第一项任务将集中于 一个预测模型的实施,以确定没有诊断出精神健康的有症状的儿童 疾病或开始治疗。该工具可识别有精神健康症状记录的患者 或最近初级保健或紧急护理访问的进展说明的自由文本中的投诉。使用此 预测算法,我们将进行一项务实的随机试验,比较干预和常规护理组 从Kaiser Permanente(KP)华盛顿和KP北方加州招募患者。该试验将招募200名 每组患者(n=400)。儿童(1)新的心理健康诊断,但没有开始治疗;(2)新的 没有精神健康诊断的精神健康药物;(3)由医生确定的症状 将招募没有新的心理健康诊断或治疗的预测模型。研究 干预将由心理健康导航员(社会工作者)为家庭提供6个月的支持。的 导航员将执行一个初步的需求和障碍评估与家庭周围的心理健康服务, 围绕心理健康护理进行持续的动机访谈,提供多达4次心理治疗课程 (when适当的)通过诊所到家庭的视频访问,帮助家庭找到和安排适当的心理 社区的卫生服务提供者,如果心理健康预约或药物补充被 错过了.主要结果是开始接受心理治疗的青年的百分比。次要结局是 至少接受过4次心理健康检查的青年所占百分比。我们假设干预组 与对照组相比,精神治疗的使用率更高。我们还将评估精神药物治疗的启动情况。 药物治疗所有主要分析将遵循意向治疗方法。将获得豁免同意, 在分析中包括所有接受干预的个人的数据,无论干预的数量如何 (导航的“剂量”)接收。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert B. Penfold其他文献

Erratum to: Use of Antipsychotic Medications in Pediatric Populations: What do the Data Say?
  • DOI:
    10.1007/s11920-013-0432-x
  • 发表时间:
    2014-01-03
  • 期刊:
  • 影响因子:
    6.700
  • 作者:
    Robert B. Penfold;Christine Stewart;Enid M. Hunkeler;Jeanne M. Madden;Janet R. Cummings;Ashli A. Owen-Smith;Rebecca C. Rossom;Christine Y. Lu;Frances L. Lynch;Beth E. Waitzfelder;Karen J. Coleman;Brian K. Ahmedani;Arne L. Beck;John E. Zeber;Gregory E. Simon
  • 通讯作者:
    Gregory E. Simon
43. Clinician Identification of Adolescents Abusing Over-the-Counter Products for Weight Control: Results From a Large Health Maintenance Organization
  • DOI:
    10.1016/j.jadohealth.2012.10.099
  • 发表时间:
    2013-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    S. Bryn Austin;Robert B. Penfold;Ron L. Johnson;Jess Haines;Sara Forman
  • 通讯作者:
    Sara Forman
32.3 Safer Use of Antipsychotics in Youth: Successes and Lessons From the Pragmatic Trial
  • DOI:
    10.1016/j.jaac.2023.07.287
  • 发表时间:
    2023-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Robert B. Penfold
  • 通讯作者:
    Robert B. Penfold

Robert B. Penfold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert B. Penfold', 18)}}的其他基金

Improving Suicide Risk Prediction with Social Determinants Data
利用社会决定因素数据改进自杀风险预测
  • 批准号:
    10528534
  • 财政年份:
    2022
  • 资助金额:
    $ 76.79万
  • 项目类别:
Assisted Identification and Navigation of Early Mental Health Symptoms in Children
儿童早期心理健康症状的辅助识别和导航
  • 批准号:
    10094734
  • 财政年份:
    2021
  • 资助金额:
    $ 76.79万
  • 项目类别:
Assisted Identification and Navigation of Early Mental Health Symptoms in Children
儿童早期心理健康症状的辅助识别和导航
  • 批准号:
    10528485
  • 财政年份:
    2021
  • 资助金额:
    $ 76.79万
  • 项目类别:
STAR Caregivers - Virtual Training and Follow-up
STAR 护理人员 - 虚拟培训和跟进
  • 批准号:
    9791152
  • 财政年份:
    2018
  • 资助金额:
    $ 76.79万
  • 项目类别:
STAR Caregivers - Virtual Training and Follow-up
STAR 护理人员 - 虚拟培训和跟进
  • 批准号:
    10200658
  • 财政年份:
    2018
  • 资助金额:
    $ 76.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了