Complementary Studies of Native Sulfite Reductase and Biosynthetic Model to Understand Structural Features Responsible for Selective Multi-Electron Reduction of Sulfite
天然亚硫酸盐还原酶和生物合成模型的互补研究,以了解负责亚硫酸盐选择性多电子还原的结构特征
基本信息
- 批准号:10330437
- 负责人:
- 金额:$ 1.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-16 至 2022-04-10
- 项目状态:已结题
- 来源:
- 关键词:Aconitate HydrataseActive SitesAddressAnimalsAssimilationsBindingBinding SitesBiologyCatalysisChemicalsChemistryComplexCoupledDrug Metabolic DetoxicationElectronsEnzymesFerredoxinGoalsHealthHealthcareHemeHemeproteinsHumanKnowledgeLeadLearningLigandsMetalsModelingModificationMolecularNatureOxidation-ReductionPathogenicityPropertyProteinsProtocols documentationProtonsReactionReagentReportingResearchResearch TrainingRespirationRoleScaffolding ProteinSiteStructureStructure-Activity RelationshipSulfidesSulfite reductaseSulfitesSulfurSystemTechniquesTestingTransition ElementsVariantVirulenceWorkX-Ray Crystallographybasecareercofactordesignenzyme substrateexperimental studyheme Cimprovedmetalloenzymemicrobialmicroorganismnovelpathogenscaffoldtraining opportunity
项目摘要
Project Summary/Abstract
The goal of this project is to obtain detailed understanding of the structural features present
in a class of multinuclear metalloenzymes that make it capable of promoting selective 6 e-
reduction of sulfite (SiRs), and address important scientific issues in the fields of complex
multinuclear transition metal active sites and the global sulfur cycle. Specifically, this project seeks
to understand the role of the coupled auxiliary [4Fe-4S] cluster reduction potential on facilitating
efficient—and selective—S-O bond cleavage of sulfite, along with the chemical nature of
intermediates that have been proposed in the catalytic cycle of SiRs. To achieve this goal, this
project proposes complimentary studies, both of a native SiR protein, and a biosynthetic model
capable of catalyzing sulfite reduction—the only current structural and functional model of SiRs.
Using a novel biosynthetic approach, which aims to overcome limitations inherent to studies of
the native enzyme alone, a robust scaffold will be used to learn which features of SiR are crucial
for its activity, through experiments designed to display a gain in function, as opposed to inferring
structure-function relationship through loss of activity in the native enzyme. The proposed
complimentary studies of these two systems will allow us to identify the structural features unique
to SiRs that lead to high catalytic efficiency towards a complex multi-electron, multi-proton
transformation. We will be able to understand: (1) the importance of the redox active [4Fe-4S]
cluster coupled to the siroheme substrate binding site on SiR activity, (2) the nature of postulated
Fe-SOx intermediates, and their relevance to the catalytic cycle of SiR, and (3) the features of the
siroheme ligand in SiR which make it suitable for sulfite reduction activity, relative to the heme c
of the biosynthetic scaffold.
Achieving the above goals will result in a deeper understanding of the structure and function
of SiRs that may be difficult to achieve by studying the native enzyme alone. By mimicking the
function of a native system through rational modifications with a different protein scaffold,
generalizable conclusions can be made concerning important structural features of the native
active site. This research plan will advance the knowledge of a broad range of multinuclear
metalloenzymes relevant to human health, specifically, related to their structure, function, and
metalloenzyme design in general, while providing an excellent training opportunity to achieve the
career goal the candidate.
项目总结/摘要
这个项目的目标是获得详细的了解结构特点目前
在一类多核金属酶,使其能够促进选择性6 e-
减少亚硫酸盐(SiRs),并解决复杂领域的重要科学问题
多核过渡金属活性中心和全球硫循环。具体而言,该项目旨在
为了理解耦合辅助[4Fe-4S]团簇还原势在促进
亚硫酸盐的有效和选择性的S-O键断裂,沿着
在SiRs的催化循环中已经提出的中间体。为了实现这一目标,
该项目提出了对天然SiR蛋白和生物合成模型的补充研究
能够催化亚硫酸盐还原-SiRs目前唯一的结构和功能模型。
使用一种新的生物合成方法,其目的是克服研究固有的局限性,
单独的天然酶,一个强大的支架将用于了解SiR的哪些特征是至关重要的
通过旨在显示功能增益的实验,而不是推断
结构-功能关系通过天然酶活性的丧失。拟议
这两个系统的互补研究将使我们能够确定独特的结构特征,
到SiR,其导致对复杂的多电子、多质子的高催化效率,
转型我们将能够理解:(1)氧化还原活性[4Fe-4S]的重要性
簇偶联到siroheme底物结合位点对SiR活性的影响,(2)假设的性质
Fe-SOx中间体及其与SiR催化循环的关系;(3)SiR催化循环的特征
SiR中的siroheme配体使其适合于亚硫酸盐还原活性,相对于血红素c
生物合成支架。
实现上述目标将导致对结构和功能的更深入理解
这可能难以通过单独研究天然酶来实现。通过模拟
通过用不同的蛋白质支架进行合理的修饰来实现天然系统的功能,
可以得出关于本族的重要结构特征的可推广的结论。
活性部位这项研究计划将促进对广泛的多核核
与人类健康相关的金属酶,特别是与其结构、功能和
金属酶设计一般,同时提供了一个极好的培训机会,以实现
候选人的职业目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher (Chris) J Reed其他文献
Christopher (Chris) J Reed的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher (Chris) J Reed', 18)}}的其他基金
Complementary Studies of Native Sulfite Reductase and Biosynthetic Model to Understand Structural Features Responsible for Selective Multi-Electron Reduction of Sulfite
天然亚硫酸盐还原酶和生物合成模型的互补研究,以了解负责亚硫酸盐选择性多电子还原的结构特征
- 批准号:
10424717 - 财政年份:2020
- 资助金额:
$ 1.43万 - 项目类别:
Complementary Studies of Native Sulfite Reductase and Biosynthetic Model to Understand Structural Features Responsible for Selective Multi-Electron Reduction of Sulfite
天然亚硫酸盐还原酶和生物合成模型的互补研究,以了解负责亚硫酸盐选择性多电子还原的结构特征
- 批准号:
9911228 - 财政年份:2020
- 资助金额:
$ 1.43万 - 项目类别:
相似海外基金
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 1.43万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 1.43万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 1.43万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 1.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 1.43万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 1.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 1.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 1.43万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 1.43万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 1.43万 - 项目类别:
Discovery Grants Program - Individual