Molecular basis for GPCR signaling fine-tuning in neurons
神经元 GPCR 信号微调的分子基础
基本信息
- 批准号:10329942
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:AchievementAdenylate CyclaseAffectAreaBindingBinding ProteinsBinding SitesBiological AssayBrainCategoriesCellsChemicalsCoinComplexCoupledCouplingDataDeuteriumDevelopmentDiseaseDissectionDrug TargetingEnsureEpilepsyEukaryotaExcitatory SynapseFDA approvedFrequenciesG Protein-Coupled Receptor SignalingG-Protein Signaling PathwayG-Protein-Coupled ReceptorsG-substrateGTP-Binding ProteinsGTPase-Activating ProteinsGoalsGuanosine TriphosphateHeterotrimeric GTP-Binding ProteinsHydrogenHydrolysisHyperalgesiaImpairmentIn VitroInhibitory SynapseKnockout MiceLaboratoriesLeadMapsMass Spectrum AnalysisMediatingMediator of activation proteinMentorsMolecularMutagenesisNervous system structureNeuronsNeurophysiology - biologic functionNeurotransmitter ReceptorNeurotransmittersNucleotidesOpioidPainPatientsPeripheral Nervous SystemPharmaceutical PreparationsPharmacologyPhenotypePhysiologicalPredispositionProcessProteinsPublic HealthReceptor ActivationRegulationSeizuresSeveritiesSignal TransductionSignaling ProteinSiteSite-Directed MutagenesisSpinal GangliaStimulusSynapsesSystemTherapeutic InterventionValidationWild Type MouseWorkantagonistbasechronic paincrosslinkdrug mechanismexperimental studygenetic regulatory proteinineffective therapiesinnovationinsightintercellular communicationnervous system disorderneurotransmissionnovelnovel therapeutic interventionpain modelpreventreceptorreconstitutionrelating to nervous systemsynaptic functiontargeted treatment
项目摘要
SIGNIFICANCE: G protein-coupled receptors (GPCRs) activate heterotrimeric G proteins, which together form
one of the most important signaling axes found in the cell. Because GPCRs are very common targets for
therapeutic drugs, the mechanisms that underlie their regulation are of high biomedical importance. Although it
is known that many cytoplasmic factors regulate the activity of G proteins after GPCR-mediated activation, they
remain greatly understudied as an untapped opportunity for therapeutic intervention. My goal here is to
characterize a novel cytoplasmic regulator of G proteins that operates through modulation of
neurotransmission, and has been shown to be relevant in the context of neurological disorders including
chronic pain and epilepsy. Current treatments for these diseases include addictive opioids in the case of pain,
or a trial-and-error drug seeking process for epilepsy that still leaves approximately 1/3 of patients with
ineffective treatments. For this reason, in this proposal I will study the molecular mechanism by how this novel
regulator controls GPCR-G protein neuronal signaling. Elucidating the molecular mechanisms of this
physiologically important G protein regulator is a first step towards the development of novel targeted
treatments for diseases that arise from dysregulated GPCR signaling.
BACKGROUND: In the course of a screen for G protein activators that bind to Gαi subunits, my Sponsor's
laboratory identified a protein that regulates G proteins via a unique and novel mechanism. We coined the term
“paradoxical G protein regulator” (PGR) to convey that it upregulates the modulation of some G protein
effectors while simultaneously downregulating the modulation of other G protein effectors. Others had found
that loss of this “PGR” alters GPCR signaling in neurons of the peripheral nervous system and causes chronic
pain. More recently my Sponsor's laboratory has found that PGR KO mice also have increased seizure
susceptibility. Despite its clear biomedical importance, the molecular mechanisms by which this G protein
regulator operates, and whether it modulates neurotransmission in brain neurons are completely unknown.
SYNOPSIS OF AIMS: Based on compelling preliminary data, I propose that the PGR modulates both Gαi- and
Gβγ-dependent signaling without directly affecting the G protein enzymatic activity (i.e., nucleotide binding
and/or hydrolysis), and that this novel mechanism fine tunes GPCR signaling in brain neurons. In AIM#1 I will
dissect how the PGR regulates G protein signaling in reconstituted systems (in vitro and cell-based), whereas
in AIM#2 I will characterize how it engages physically Gαi by combining mass-spectrometry and mutagenesis.
In AIM#3 I will characterize how the endogenous PGR regulates neuronal GPCR signaling by using primary
cultures of neurons from wild-type and KO mice. Together, the achievement of my goals will lead to the
dissection of a previously uncharacterized mechanism of regulation of GPCR signaling with important
consequences in normal neural function and neurological disorders such as chronic pain and epilepsy.
意义:G蛋白偶联受体(GPCR)激活异源三聚体G蛋白,
细胞中最重要的信号轴之一。因为GPCR是非常常见的目标,
治疗药物,其调节机制具有高度的生物医学重要性。虽然
已知许多细胞质因子在GPCR介导的活化后调节G蛋白的活性,它们
作为一个尚未开发的治疗干预机会,仍然被大大低估。我的目标是
描述了一种新的G蛋白胞质调节因子,其通过调节
神经传递,并已被证明是相关的神经系统疾病的背景下,包括
慢性疼痛和癫痫。目前对这些疾病的治疗包括在疼痛的情况下使用成瘾性阿片类药物,
或者是一个试错式的癫痫药物寻求过程,仍然有大约1/3的患者
无效的治疗。为此,在本建议中我将研究如何通过这种新颖的分子机制
调节子控制GPCR-G蛋白神经元信号传导。阐明了这一分子机制
生理上重要的G蛋白调节剂是开发新型靶向药物的第一步。
治疗由GPCR信号失调引起的疾病。
背景:在筛选与Gαi亚基结合的G蛋白激活剂的过程中,我的申办者的
一个实验室发现了一种通过独特的新机制调节G蛋白的蛋白质。我们创造了一个术语
“矛盾的G蛋白调节因子”(PGR)来表达它上调某些G蛋白的调节
同时下调其他G蛋白效应子的调节。其他人发现
这种“PGR”的缺失改变了外周神经系统神经元中的GPCR信号,并导致慢性炎症。
痛苦最近,我的赞助商的实验室发现,PGR基因敲除小鼠也有增加癫痫发作
易感性尽管其明确的生物医学重要性,这种G蛋白的分子机制,
调节器的运作,以及它是否调节大脑神经元的神经传递是完全未知的。
目的概要:基于令人信服的初步数据,我提出PGR调节Gαi和
Gβγ依赖性信号传导而不直接影响G蛋白酶活性(即,核苷酸结合
和/或水解),并且这种新机制微调了脑神经元中的GPCR信号传导。在AIM#1中,
剖析PGR如何调节重组系统中的G蛋白信号传导(体外和基于细胞的),而
在AIM#2中,我将通过结合质谱和诱变来描述它如何与Gαi物理结合。
在AIM#3中,我将通过使用初级PCR来表征内源性PGR如何调节神经元GPCR信号传导。
来自野生型和KO小鼠的神经元培养物。我的目标的实现将导致
一个以前未表征的GPCR信号调节机制的解剖与重要的
这类药物对正常神经功能和神经系统疾病(如慢性疼痛和癫痫)的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex Luebbers其他文献
Alex Luebbers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex Luebbers', 18)}}的其他基金
Molecular basis for GPCR signaling fine-tuning in neurons
神经元 GPCR 信号微调的分子基础
- 批准号:
10056172 - 财政年份:2020
- 资助金额:
$ 4.68万 - 项目类别:
Molecular basis for GPCR signaling fine-tuning in neurons
神经元 GPCR 信号微调的分子基础
- 批准号:
9906553 - 财政年份:2020
- 资助金额:
$ 4.68万 - 项目类别:
相似海外基金
Neuroendocrine regulation of energy metabolism: role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the thermoregulatory cascade
能量代谢的神经内分泌调节:垂体腺苷酸环化酶激活多肽(PACAP)在温度调节级联中的作用
- 批准号:
RGPIN-2021-04040 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
Discovery Grants Program - Individual
Controlled Release of Pituitary Adenylate Cyclase Activating Polypeptide from a Hydrogel-Nanoparticle Delivery Vehicle for Applications in the Central Nervous System
从水凝胶-纳米粒子递送载体中控制释放垂体腺苷酸环化酶激活多肽,用于中枢神经系统的应用
- 批准号:
547124-2020 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Controlled Release of Pituitary Adenylate Cyclase Activating Polypeptide from a Hydrogel-Nanoparticle Delivery Vehicle for Applications in the Central Nervous System
从水凝胶-纳米粒子递送载体中控制释放垂体腺苷酸环化酶激活多肽,用于中枢神经系统的应用
- 批准号:
547124-2020 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
Postgraduate Scholarships - Doctoral
Neuroendocrine regulation of energy metabolism: role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the thermoregulatory cascade
能量代谢的神经内分泌调节:垂体腺苷酸环化酶激活多肽(PACAP)在温度调节级联中的作用
- 批准号:
RGPIN-2021-04040 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
Discovery Grants Program - Individual
The Molecular Mechanism of the Secretion of the Bacterial Toxin Adenylate Cyclase
细菌毒素腺苷酸环化酶分泌的分子机制
- 批准号:
451966 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
Operating Grants
The role of prefrontostriatal Pituitary Adenylate Cyclase Activating Polypeptide in excessive and compulsive ethanol drinking
前额纹状体垂体腺苷酸环化酶激活多肽在过量和强迫性乙醇饮酒中的作用
- 批准号:
10455587 - 财政年份:2020
- 资助金额:
$ 4.68万 - 项目类别:
The role of prefrontostriatal Pituitary Adenylate Cyclase Activating Polypeptide in excessive and compulsive ethanol drinking
前额纹状体垂体腺苷酸环化酶激活多肽在过量和强迫性乙醇饮酒中的作用
- 批准号:
10261394 - 财政年份:2020
- 资助金额:
$ 4.68万 - 项目类别:
Diagnosis and therapeutic effect of neurally mediated syncope (NMS) using fluctuation of adenylate cyclase activity
利用腺苷酸环化酶活性波动对神经介导性晕厥(NMS)的诊断和治疗效果
- 批准号:
20K08498 - 财政年份:2020
- 资助金额:
$ 4.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pituitary adenylate cyclase-activating polypeptide 27 in the paraventricular thalamus and its projections: Role in ethanol drinking
室旁丘脑中的垂体腺苷酸环化酶激活多肽 27 及其预测:在乙醇饮用中的作用
- 批准号:
10380126 - 财政年份:2020
- 资助金额:
$ 4.68万 - 项目类别:
The role of prefrontostriatal Pituitary Adenylate Cyclase Activating Polypeptide in excessive and compulsive ethanol drinking
前额纹状体垂体腺苷酸环化酶激活多肽在过量和强迫性乙醇饮酒中的作用
- 批准号:
10662279 - 财政年份:2020
- 资助金额:
$ 4.68万 - 项目类别: