Drug repurposing in breast cancer
乳腺癌的药物再利用
基本信息
- 批准号:10328975
- 负责人:
- 金额:$ 43.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-02-13 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:Animal ExperimentsBiological MarkersBreast Cancer TreatmentCancer ModelCancer PatientCancer cell lineCell LineCellsClinicalClinical TrialsComputing MethodologiesConsumptionDataData SetDatabasesDeath RateDevelopmentDiseaseDrug CombinationsDrug usageGenesGenomeGoalsGrowthHealthcare SystemsIn VitroIndividualMalignant NeoplasmsMedicalMetastatic breast cancerMethodologyMethodsMissionMolecularMolecular ProfilingMorbidity - disease rateMusPatient CarePatientsPharmaceutical PreparationsPharmacogenomicsPre-Clinical ModelProcessPublic HealthPublishingRefractoryRegimenRelapseResearchResourcesSamplingSpeedTaxonomyTestingThe Cancer Genome AtlasTherapeuticTimeTissuesTranslatingTreatment outcomeUnited States National Institutes of HealthValidationXenograft procedureadvanced breast cancerbasebiomarker discoverycancer genomicscancer therapycancer typecostdata miningdisorder subtypedrug developmentdrug repurposingdrug response predictiondrug sensitivitydrug testingefficacious treatmentefficacy validationestablished cell linegenome-widegenomic datahigh throughput screeningimprovedin vivoindividualized medicineinnovationinterestmalignant breast neoplasmmolecular subtypesmortalitymouse modelnovelnovel therapeuticsoptimal treatmentspatient derived xenograft modelpatient responsephenotypic datapre-clinicalprecision medicinepredictive modelingprospective testresponsesmall moleculesoundstandard of caresurvival outcometherapy developmenttooltranscriptometriple-negative invasive breast carcinomatumorwhole genome
项目摘要
Project Summary/Abstract
Reducing advanced breast cancer mortality requires urgent development of better drugs and improved
therapeutic strategies; however, new drug development is extremely time-consuming and costly. With the
explosive growth of large-scale cancer genomic and phenotypic data (e.g., the Cancer Genome Atlas [TCGA])
and publicly available high-throughput screening data for thousands of small molecules (many of which have
already received regulatory approval for at least one medical condition), computational drug repositioning or
repurposing holds great potential for precision medicine and may provide tools to significantly improve breast
cancer treatment and outcomes.
Our hypothesis is that optimal therapeutic choices can be identified for hard to treat breast cancers by
applying transcriptome-based drug sensitivity prediction methods. Our long term goal is to identify and validate
the efficacy of existing drugs in hard to treat breast cancers, namely triple negative breast cancer (TNBC) and
metastatic breast cancer (MBC). Toward this goal, this proposal contains two specific aims to develop, apply,
and improve methods to predict drug sensitivity (either as a single agent or in combination). We will also
validate these predictions in additional large-scale cancer genomic datasets and translate the results using cell
based and in vivo (mouse) models of TNBC and MBC. In Aim 1, we will focus on identifying effective drugs as
monotherapy, while Aim 2 is to identify and validate optimal therapeutic combinations.
Our study is significant because it will accelerate the development of novel therapies for hard to treat
breast cancers by repurposing existing drugs, thus avoiding the lengthy and risky new drug development
process. The ability to tailor therapy for specific disease subtypes and identification and validation of new drug
indications will provide valuable therapeutic options in the battle against TNBC and MBC, and subsequently
reduce their associated mortality. Our proposed research is innovative in both the methodologies employed
and their applications, as our transcriptome-based drug sensitivity prediction represents a paradigms shift in
drug sensitivity prediction; furthermore, we are applying these novel prediction approaches to patient tumor
data not only for biomarker discovery in order to tailor individual therapy, but also for drug repurposing. The
ability to bring biomarker discovery and drug repurposing together will present a new opportunity for cancer
therapy, as the whole genome expression profile of a tumor will be used to provide optimal therapeutic options
in different cancers, and many “old” drugs can find a new purpose in improving cancer treatment outcomes.
项目总结/摘要
降低晚期乳腺癌死亡率需要紧急开发更好的药物,
治疗策略;然而,新药开发极其耗时且昂贵。与
大规模癌症基因组和表型数据的爆炸性增长(例如,癌症基因组图谱(TCGA))
和公开可用的高通量筛选数据的数千个小分子(其中许多具有
已经获得至少一种医疗状况的监管批准),计算药物重新定位或
再利用为精准医学提供了巨大的潜力,并可能为显着改善乳腺癌提供工具
癌症治疗和结果。
我们的假设是,最佳的治疗选择可以确定为难以治疗的乳腺癌,
应用基于转录组的药物敏感性预测方法。我们的长期目标是识别和验证
现有药物在难以治疗的乳腺癌,即三阴性乳腺癌(TNBC)中的疗效,
转移性乳腺癌(MBC)。为实现这一目标,该提案包含两个具体目标,即开发、应用、
并改进预测药物敏感性的方法(作为单一药剂或组合)。我们还将
在其他大规模癌症基因组数据集中验证这些预测,并使用细胞
基于TNBC和MBC的模型和体内(小鼠)模型。在目标1中,我们将重点确定有效的药物,
目标2是确定和验证最佳治疗组合。
我们的研究意义重大,因为它将加速难以治疗的新疗法的发展。
通过重新利用现有的药物,从而避免了漫长而危险的新药开发,
过程为特定疾病亚型定制治疗以及识别和验证新药的能力
适应症将在对抗TNBC和MBC的斗争中提供有价值的治疗选择,
降低相关死亡率。我们提出的研究是创新的,在这两个方法采用
及其应用,因为我们基于转录组的药物敏感性预测代表了一种范式转变,
药物敏感性预测;此外,我们正在将这些新的预测方法应用于患者肿瘤
数据不仅用于生物标志物发现,以定制个性化治疗,而且用于药物再利用。的
将生物标志物发现和药物再利用结合在一起的能力将为癌症提供新的机会
因为肿瘤的全基因组表达谱将用于提供最佳治疗选择,
在不同的癌症中,许多“老”药物可以在改善癌症治疗结果方面找到新的用途。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Emerging role of long non-coding RNAs in cancer precision medicine.
长链非编码 RNA 在癌症精准医学中的新兴作用。
- DOI:10.1080/23723556.2019.1684130
- 发表时间:2020
- 期刊:
- 影响因子:2.1
- 作者:Nath,Aritro;Huang,RStephanie
- 通讯作者:Huang,RStephanie
Long Non-Coding RNA ANRIL as a Potential Biomarker of Chemosensitivity and Clinical Outcomes in Osteosarcoma.
- DOI:10.3390/ijms222011168
- 发表时间:2021-10-16
- 期刊:
- 影响因子:5.6
- 作者:Lee AM;Ferdjallah A;Moore E;Kim DC;Nath A;Greengard E;Huang RS
- 通讯作者:Huang RS
Facilitating Drug Discovery in Breast Cancer by Virtually Screening Patients Using In Vitro Drug Response Modeling.
- DOI:10.3390/cancers13040885
- 发表时间:2021-02-20
- 期刊:
- 影响因子:5.2
- 作者:Gruener RF;Ling A;Chang YF;Morrison G;Geeleher P;Greene GL;Huang RS
- 通讯作者:Huang RS
Cancer expression quantitative trait loci (eQTLs) can be determined from heterogeneous tumor gene expression data by modeling variation in tumor purity.
- DOI:10.1186/s13059-018-1507-0
- 发表时间:2018-09-11
- 期刊:
- 影响因子:12.3
- 作者:Geeleher P;Nath A;Wang F;Zhang Z;Barbeira AN;Fessler J;Grossman RL;Seoighe C;Stephanie Huang R
- 通讯作者:Stephanie Huang R
Oncogene or tumor suppressor? Long noncoding RNAs role in patient's prognosis varies depending on disease type.
- DOI:10.1016/j.trsl.2020.10.011
- 发表时间:2021-04
- 期刊:
- 影响因子:0
- 作者:Huang Y;Ling A;Pareek S;Huang RS
- 通讯作者:Huang RS
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rong Stephanie Huang其他文献
Rong Stephanie Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rong Stephanie Huang', 18)}}的其他基金
Genetic mechanisms underlying sexual dimorphism in cancer and response to therapy
癌症性别二态性的遗传机制和治疗反应
- 批准号:
10071427 - 财政年份:2019
- 资助金额:
$ 43.52万 - 项目类别:
Genetic mechanisms underlying sexual dimorphism in cancer and response to therapy
癌症性别二态性的遗传机制和治疗反应
- 批准号:
10474969 - 财政年份:2019
- 资助金额:
$ 43.52万 - 项目类别:
Genetic mechanisms underlying sexual dimorphism in cancer and response to therapy
癌症性别二态性的遗传机制和治疗反应
- 批准号:
10633202 - 财政年份:2019
- 资助金额:
$ 43.52万 - 项目类别:
Genetic mechanisms underlying sexual dimorphism in cancer and response to therapy
癌症性别二态性的遗传机制和治疗反应
- 批准号:
10204724 - 财政年份:2019
- 资助金额:
$ 43.52万 - 项目类别:
Genome-wide interrogation of genetic signatures for glucocorticoid sensitivity
对糖皮质激素敏感性遗传特征进行全基因组询问
- 批准号:
8606465 - 财政年份:2010
- 资助金额:
$ 43.52万 - 项目类别:
Genome-wide interrogation of genetic signatures for glucocorticoid sensitivity
对糖皮质激素敏感性遗传特征进行全基因组询问
- 批准号:
8437281 - 财政年份:2010
- 资助金额:
$ 43.52万 - 项目类别:
Genome-wide interrogation of genetic signatures for glucocorticoid sensitivity
对糖皮质激素敏感性遗传特征进行全基因组询问
- 批准号:
7771932 - 财政年份:2010
- 资助金额:
$ 43.52万 - 项目类别:
Genome-wide interrogation of genetic signatures for glucocorticoid sensitivity
对糖皮质激素敏感性遗传特征进行全基因组询问
- 批准号:
8035998 - 财政年份:2010
- 资助金额:
$ 43.52万 - 项目类别:
Genome-wide interrogation of genetic signatures for glucocorticoid sensitivity
对糖皮质激素敏感性遗传特征进行全基因组询问
- 批准号:
8228163 - 财政年份:2010
- 资助金额:
$ 43.52万 - 项目类别:
相似海外基金
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10490338 - 财政年份:2021
- 资助金额:
$ 43.52万 - 项目类别:
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10353104 - 财政年份:2021
- 资助金额:
$ 43.52万 - 项目类别:
Investigating pollution dynamics of swimming pool waters by means of chemical and biological markers
利用化学和生物标记物研究游泳池水体的污染动态
- 批准号:
21K04320 - 财政年份:2021
- 资助金额:
$ 43.52万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10688286 - 财政年份:2021
- 资助金额:
$ 43.52万 - 项目类别:
Novel biological markers for immunotherapy and comprehensive genetic analysis in thymic carcinoma
用于胸腺癌免疫治疗和综合遗传分析的新型生物标志物
- 批准号:
20K17755 - 财政年份:2020
- 资助金额:
$ 43.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10578649 - 财政年份:2019
- 资助金额:
$ 43.52万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10295141 - 财政年份:2019
- 资助金额:
$ 43.52万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10041708 - 财政年份:2019
- 资助金额:
$ 43.52万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
9776149 - 财政年份:2019
- 资助金额:
$ 43.52万 - 项目类别:
Combining biological and non-biological markers to develop a model predictive of treatment response for individuals with depression
结合生物和非生物标志物来开发预测抑郁症患者治疗反应的模型
- 批准号:
2063934 - 财政年份:2018
- 资助金额:
$ 43.52万 - 项目类别:
Studentship