Quantifying heterocellular communication and spatial intratumoral heterogeneity from high dimensional spatial proteomics data

从高维空间蛋白质组数据量化异细胞通讯和空间瘤内异质性

基本信息

项目摘要

The tumor microenvironment (TME) is composed of malignant and non-malignant cells, each contributing to spatial intratumoral heterogeneity (ITH) and heterocellular communication altering the composition and architecture of the TME. A high degree of ITH is correlated to metastatic progression and therapeutic response. Previous studies investigating spatial ITH have been limited due to a steep trade-off between cellular resolution, spatial context, and dimensionality of biomarkers. A recent explosion of multi to hyperplexed imaging modalities (e.g., fluorescence imaging, mass-spec imaging) enable the quantification of greater than 7 and up to > 100 biomarkers through sequentially multiplexed imaging of 2 to 3 biomarkers using iterative cycles of label-image-dye inactivation. The generation of this new type of data poses both unique opportunities and challenges. There are no state-of-the-art methods for harnessing the complexity of spatial data to infer tumor biology with a high dimensionality of biomarkers. In this project, we will probe the spatial complexity of a TME in hyperplexed immunofluorescence (HxIF) based spatial proteomics colorectal carcinoma (CRC) data (51 biomarkers + DAPI, 356 patient samples) to elucidate the heterocellular communication networks promoting spatial ITH through cellular phenotyping, microdomain extraction, and network biology inference algorithms. We will demonstrate the applicability of our algorithms to cancer types beyond CRC with multiplexed immunofluorescence breast cancer tissue samples In Aim 1, we will continue to develop unsupervised learning algorithm for cellular phenotypic heterogeneity (LEAPH) to identify specialized, rare, and transitional cell populations. Initial results applying LEAPH on the HxIF CRC data have revealed cellular heterogeneity patterns consistent with CRC literature (STEM cell differentiation, immune evasion, macrophage evolution). We will incorporate machine learning- based methods into LEAPH to measure spatial distribution patterns of each phenotype and correlate them with CRC progression (e.g., recurrence). In Aim 2, we will quantify spatial ITH in greater detail by identifying differentially expressed pair- or group-wise spatial relationships based on outcome data (e.g., recurrence vs no-recurrence within 5 years) to reveal phenotypic domains, microdomains, with prognostic potential. We expect improvement of prognostic power with pair- or group-wise spatial interactions in comparison to the single-phenotype based spatial ITH characterization of Aim 1. In Aim 3, we will dissect the microdomain- specific heterocellular communication dynamics with causal inference network models. We expect to identify emergent signaling networks conferring malignant phenotypes, such as known features from CRC consensus molecular subtypes. The algorithms constructed in this project will be implemented and disseminated through the Tumor Heterogeneity Research Interactive Visualization Environment (THRIVE), an open source tool to assist cancer researchers in interactive hypotheses testing and guiding the design of therapeutic strategies.
肿瘤微环境(tumor microenvironment, TME)由恶性细胞和非恶性细胞组成

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samantha A. Furman其他文献

Samantha A. Furman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 4.55万
  • 项目类别:
    Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
  • 批准号:
    2339197
  • 财政年份:
    2024
  • 资助金额:
    $ 4.55万
  • 项目类别:
    Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
  • 批准号:
    2409279
  • 财政年份:
    2024
  • 资助金额:
    $ 4.55万
  • 项目类别:
    Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
  • 批准号:
    2419386
  • 财政年份:
    2024
  • 资助金额:
    $ 4.55万
  • 项目类别:
    Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
  • 批准号:
    2348571
  • 财政年份:
    2024
  • 资助金额:
    $ 4.55万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 4.55万
  • 项目类别:
    Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
  • 批准号:
    2904511
  • 财政年份:
    2024
  • 资助金额:
    $ 4.55万
  • 项目类别:
    Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
  • 批准号:
    BB/X014657/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.55万
  • 项目类别:
    Research Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
  • 批准号:
    EP/Y028120/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.55万
  • 项目类别:
    Fellowship
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
  • 批准号:
    2344424
  • 财政年份:
    2024
  • 资助金额:
    $ 4.55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了