Doc Sherlock: An Autonomous Relay Agent for Discovering the "Unknown Knowns" in Precision Medicine
夏洛克博士:发现精准医学中“未知的知识”的自主中继代理
基本信息
- 批准号:10333495
- 负责人:
- 金额:$ 92.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-24 至 2022-01-23
- 项目状态:已结题
- 来源:
- 关键词:16p11.2BackCollaborationsDataData DiscoveryData SetData SourcesDiseaseGenesHarvestIntelligenceKnowledgeLanguageLogicMeasuresMindModelingModernizationOntologyPatientsPharmaceutical PreparationsPhasePhysiciansProviderPublicationsPublishingRoleScientistSimvastatinSiteSourceSyndromeVisitWorkcostnew growthprecision medicinetool
项目摘要
Component: We propose a generalization of our Translator reasoner tool mediKanren [1] into
“Doc Sherlock”: an Autonomous Relay Agent (ARA) to answer biomedical queries from multiple
Knowledge Providers (KPs) via probabilistic, logical and abductive inference.
Problem: Eliminating the “Unknown Known”: With the explosive growth of new publications,
data sets and discoveries, a distinctly modern problem has emerged: the rapid expansion of the
“unknown known.” The unknown known are facts that are either (1) forgotten -- facts published
but not known widely -- or (2) uninferred -- facts inferable from known facts but not yet deduced.
We take it as the role of KPs to uncover the forgotten by systematically harvesting existing
sources of knowledge. We thus take it as the role of ARAs to tackle the uninferred -- the
conclusions that could have been drawn if only all of the premises were co-resident in a single
reasoner’s mind. For pragmatic purposes, we restrict the queries to a tractable yet ambitious
class: queries raised by physician-scientists -- for whom the cost of the unknown known is
measured in patients' lives.
Plan : Doc Sherlock will use the advanced logic programming engine miniKanren [2,3] , and it will
use probabilistic inference rules to tackle queries inspired by physician-scientists and rank
results by confidence. For example, we imagine Doc Sherlock answering the question, “What
may treat 16p11.2 deletion syndrome?” by using a KP backed by something like Ensembl [4] to
look up all the genes in 16p11.2; a second KP backed by a dataset like gnomAD [5,6] to rank
haploinsufficient genes, e.g., “KCTD13 is haploinsufficient” [97% confidence]; a gene-gene KP
like SemMedDB [7] to find a relationship like “KCTD13 inhibits RhoA” [97% confidence] and
then using a drug-gene KP to find that “Simvastatin inhibits RhoA” [99% confidence] to
hypothesize that “Simvastatin may mitigate 16p11.2 deletion via RhoA inhibition” [93% imputed
confidence]. To answer queries from physician-scientists, data sources which have gene-gene,
drug-gene, disease-gene or drug-disease relationships will be high priority.
Collaboration : Building on our collaboration model from the current Translator phase, we plan
to visit other sites and have them visit us to work on problems from physician-scientists. We will
support the ARA standard API, and other Translator Standards. For queries richer than the
designated API, we will support programmatic access to Doc Sherlock’s query language.
Challenges: The primary technical challenge in reasoning across distinct KPs is intelligently
aliasing identical concepts within different data sets. To connect ontologies from different KPs,
we propose exploring the use of Galois connections [8,9] -- a generalization of isomorphism
suitable for use between two partial orders (such as ontologies). A major benefit will be the
ability to conduct abductive reasoning and to go beyond the restrictions of living within a single
KP -- our preliminary data shows a 43% improvement in inference across KPs [see Plan].
组件:我们提出了我们的翻译器推理工具mediKanren [1]的概括,
“Doc Sherlock”:一个自主中继代理(ARA),可以回答来自多个
知识提供者(KPs)通过概率,逻辑和溯因推理。
问题:消除“未知已知”:随着新出版物的爆炸式增长,
数据集和发现,一个明显的现代问题已经出现:
“未知的已知”未知的已知的事实要么是(1)被遗忘的事实--被公布的事实
但并不广为人知--或(2)未推断出的--从已知事实中可推断出但尚未推断出的事实。
我们把它作为KPs的角色,通过系统地收获现有的知识来发现被遗忘的东西。
知识的来源。因此,我们认为ARA的作用是解决未推断的问题,
如果所有的前提都共同居住在一个单一的,
理性的头脑。出于实用的目的,我们将查询限制为易于处理但雄心勃勃的
类:由物理学家-科学家提出的问题-对他们来说,未知已知的成本是
以患者的生命为衡量标准。
计划:Doc Sherlock将使用高级逻辑编程引擎miniKanren [2,3],并且它将
使用概率推理规则来处理由物理学家和科学家启发的查询,
信心的结果。例如,我们想象夏洛克医生回答这个问题,“什么?
可以治疗16p11.2缺失综合征吗“通过使用由类似Ensembl的东西支持的KP [4],
查找16p11.2中的所有基因;由gnomAD [5,6]等数据集支持的第二个KP进行排名
单倍不足基因,例如,“KCTD 13是单倍不足”[97%置信度];基因-基因KP
像SemMedDB [7]一样找到像“KCTD 13抑制RhoA”这样的关系[97%置信度],
然后使用药物基因KP发现“辛伐他汀抑制RhoA”[99%置信度],
假设“辛伐他汀可能通过RhoA抑制减轻16p11.2缺失”[93%插补
信心]。为了回答来自医生科学家,数据源有基因基因,
药物-基因、疾病-基因或药物-疾病关系将是高度优先的。
协作:基于当前翻译阶段的协作模型,我们计划
访问其他网站,让他们访问我们的工作,从物理学家的问题,科学家。我们将
支持ARA标准API和其他翻译标准。对于比
指定的API,我们将支持对Doc Sherlock查询语言的编程访问。
挑战:在不同的KP之间进行推理的主要技术挑战是智能地
在不同的数据集中混淆相同的概念。为了连接来自不同KP的本体,
我们建议探索伽罗瓦连接的使用[8,9] --同构的推广
适用于两个偏序(例如本体)之间。一个主要的好处将是
进行溯因推理的能力,并超越生活在一个单一的限制,
KP --我们的初步数据显示,在KPs之间的推理有43%的改进[见计划]。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William E Byrd其他文献
William E Byrd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William E Byrd', 18)}}的其他基金
Doc Sherlock: An Autonomous Relay Agent for Discovering the "Unknown Knowns" in Precision Medicine
夏洛克博士:发现精准医学中“未知的知识”的自主中继代理
- 批准号:
10056893 - 财政年份:2020
- 资助金额:
$ 92.23万 - 项目类别:
Doc Sherlock: An Autonomous Relay Agent for Discovering the "Unknown Knowns" in Precision Medicine
夏洛克博士:发现精准医学中“未知的知识”的自主中继代理
- 批准号:
10705404 - 财政年份:2020
- 资助金额:
$ 92.23万 - 项目类别:
Doc Sherlock: An Autonomous Relay Agent for Discovering the "Unknown Knowns" in Precision Medicine
夏洛克博士:发现精准医学中“未知的知识”的自主中继代理
- 批准号:
10548480 - 财政年份:2020
- 资助金额:
$ 92.23万 - 项目类别:
相似国自然基金
基于Teach-back药学科普模式的慢阻肺患者吸入用药依从性及疗效研究
- 批准号:2024KP61
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Quench-Back保护的超导螺线管磁体失超过程数值模拟研究
- 批准号:51307073
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 92.23万 - 项目类别:
Continuing Grant
One-step reconstruction of plastic waste back to its constituent monomers (ONESTEP)
将塑料废物一步重建回其组成单体(ONESTEP)
- 批准号:
EP/Y003934/1 - 财政年份:2024
- 资助金额:
$ 92.23万 - 项目类别:
Research Grant
On the origin of very massive back holes
关于巨大背洞的起源
- 批准号:
DP240101786 - 财政年份:2024
- 资助金额:
$ 92.23万 - 项目类别:
Discovery Projects
Back to our roots: Re-activating Indigenous biocultural conservation
回到我们的根源:重新激活本土生物文化保护
- 批准号:
FT230100595 - 财政年份:2024
- 资助金额:
$ 92.23万 - 项目类别:
ARC Future Fellowships
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
- 批准号:
2328741 - 财政年份:2023
- 资助金额:
$ 92.23万 - 项目类别:
Continuing Grant
Collaborative Research: NSFGEO-NERC: MEZCAL: Methods for Extending the horiZontal Coverage of the Amoc Latitudinally and back in time (MEZCAL)
合作研究:NSFGEO-NERC:MEZCAL:扩展 Amoc 纬度和时间回水平覆盖范围的方法 (MEZCAL)
- 批准号:
2409764 - 财政年份:2023
- 资助金额:
$ 92.23万 - 项目类别:
Standard Grant
Relationships Between Pain-Related Psychological Factors, Gait Quality, and Attention in Chronic Low Back Pain
慢性腰痛中疼痛相关心理因素、步态质量和注意力之间的关系
- 批准号:
10679189 - 财政年份:2023
- 资助金额:
$ 92.23万 - 项目类别:
The Role of VEGF in the Development of Low Back Pain Following IVD Injury
VEGF 在 IVD 损伤后腰痛发展中的作用
- 批准号:
10668079 - 财政年份:2023
- 资助金额:
$ 92.23万 - 项目类别:
Psilocybin and Affective Function in Chronic Lower Back Pain and Depression
裸盖菇素与慢性腰痛和抑郁症的情感功能
- 批准号:
10626449 - 财政年份:2023
- 资助金额:
$ 92.23万 - 项目类别:
Brain Mechanisms of Chronic Low-Back Pain: Specificity and Effects of Aging and Sex
慢性腰痛的脑机制:衰老和性别的特异性和影响
- 批准号:
10657958 - 财政年份:2023
- 资助金额:
$ 92.23万 - 项目类别:














{{item.name}}会员




