ICEES+ Knowledge Provider: Leveraging Open Clinical and Environmental Data to Accelerate and Drive Innovation in Translational Research and Clinical Care.

ICEES 知识提供商:利用开放的临床和环境数据加速和推动转化研究和临床护理的创新。

基本信息

项目摘要

As part of the feasibility phase of the Translator program, we have developed a disease-agnostic framework and approach for openly exposing clinical data that have been integrated at the patient- and visit-level with environmental exposures data: the Integrated Clinical and Environmental Exposures Service (ICEES). We have validated ICEES and demonstrated the service’s ability to replicate and extend published findings on asthma, while also supporting open team science, accelerated translational discovery, and integration with the broader Translator ecosystem. This proposal aims to move ICEES from prototype to development via creation of an ICEES+ Knowledge Provider (KP). Specifically, we aim to address three major challenges that we have identified through research and development (R&D) of the prototype ICEES in an effort to improve the quality, value, and impact of query answers and assertions. Specific Aim 1. Advance the rigor of insights and assertions that ICEES provides. Our prototype ICEES currently provides the ability to dynamically define cohorts and conduct simple statistical associations to examine bivariate relationships between feature variables. Recently, we have identified an approach to extend the bivariate functionalities to support multivariate analysis of the data. For the proposed work, we will apply multivariate analyses, including traditional statistical methods (e.g., regression models) and machine learning methods (e.g., bayesian neural network models, variational autoencoder models), and systematically quantify the extent of data loss and analytic bounds when algorithms are imposed on the ICEES+ KP open application programming interface (API) versus the Institutional Review Board (IRB)– protected, fully identified, pre-binned, underlying integrated feature tables. The overall goal is to provide users with more rigorous insights and estimates of the robustness, validity, accuracy, and specificity of knowledge and assertions generated via the ICEES+ KP OpenAPI. Specific Aim 2. Address issues related to space–time and causality. Clinical and environmental data are inherently spatiotemporal, with observations or events that are contingent on space and time and may be causally related. For the proposed work, we will evaluate and implement technical approaches (e.g., ICEES+ design modifications), spatiotemporal statistical algorithms (e.g., conditional auto-regression), recurrent neural network models, and causal inference models. As part of this effort, we will derive insights from and contribute real-world evidence to support Causal Activity Models and Adverse Outcome Pathways. We also will explore approaches for incorporating into ICEES+ nationwide public data on school exposures—data that will allow us to begin to address patient mobility. Specific Aim 3. Evaluate the security of the ICEES+ KP to ensure that patient privacy is preserved as new capabilities are enabled. ImPACT is an NSF-funded package of tools and services that provides end-to-end infrastructure and support for privacy-assured research and computation on sensitive data. Over the award period, we will implement and evaluate ImPACT security protocols, focusing initially on application of the ImPACT secure multiparty computation (SMC) algorithm as a method to support secure multi-institutional sharing of data on rare diseases and events—a functionality that is not currently supported by ICEES. In addition, we will evaluate other ImPACT security protocols, working under the guidance of a security advisor and in the context of driving use cases and capabilities developed under Specific Aims1 and 2. Importantly, the project aims will be driven by three use cases and associated high-value queries designed to complement and extend our asthma-focused work on the prototype ICEES: (1) an asthma cohort from the Environmental Polymorphism Registry (EPR) at the National Institute for Environmental Health Sciences (NIEHS); (2) a primary ciliary disease cohort (PCD) from the UNC PCD Registry; and (3) a drug-induced liver injury (DILI) cohort from the National DILI Network. These use cases will invoke new diseases, new data types, new organ systems, new institutions, and new queries, thereby stress-testing the ICEES framework and approach and moving it from prototype to development as the ICEES+ KP.
作为Translator项目可行性阶段的一部分,我们开发了一种疾病不可知论方法

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stanley Carlton Ahalt其他文献

Stanley Carlton Ahalt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stanley Carlton Ahalt', 18)}}的其他基金

A Strategy for Heal Federated Data Ecosystem
治愈联合数据生态系统的策略
  • 批准号:
    10556559
  • 财政年份:
    2021
  • 资助金额:
    $ 98.22万
  • 项目类别:
Core C: Data Management and Analysis Core (DMAC)
核心C:数据管理和分析核心(DMAC)
  • 批准号:
    10570849
  • 财政年份:
    2020
  • 资助金额:
    $ 98.22万
  • 项目类别:
ICEES+ Knowledge Provider: Leveraging Open Clinical and Environmental Data to Accelerate and Drive Innovation in Translational Research and Clinical Care.
ICEES 知识提供商:利用开放的临床和环境数据加速和推动转化研究和临床护理的创新。
  • 批准号:
    10548477
  • 财政年份:
    2020
  • 资助金额:
    $ 98.22万
  • 项目类别:
ICEES+ Knowledge Provider: Leveraging Open Clinical and Environmental Data to Accelerate and Drive Innovation in Translational Research and Clinical Care.
ICEES 知识提供商:利用开放的临床和环境数据加速和推动转化研究和临床护理的创新。
  • 批准号:
    10705401
  • 财政年份:
    2020
  • 资助金额:
    $ 98.22万
  • 项目类别:
ICEES+ Knowledge Provider: Leveraging Open Clinical and Environmental Data to Accelerate and Drive Innovation in Translational Research and Clinical Care.
ICEES 知识提供商:利用开放的临床和环境数据加速和推动转化研究和临床护理的创新。
  • 批准号:
    10056783
  • 财政年份:
    2020
  • 资助金额:
    $ 98.22万
  • 项目类别:
NHLBI Data Stage Coordinating Center
NHLBI 数据阶段协调中心
  • 批准号:
    10443100
  • 财政年份:
    2018
  • 资助金额:
    $ 98.22万
  • 项目类别:
NHLBI Data Stage Coordinating Center
NHLBI 数据阶段协调中心
  • 批准号:
    10269962
  • 财政年份:
    2018
  • 资助金额:
    $ 98.22万
  • 项目类别:
NHLBI Data Stage Coordinating Center
NHLBI 数据阶段协调中心
  • 批准号:
    10933191
  • 财政年份:
    2018
  • 资助金额:
    $ 98.22万
  • 项目类别:
NHLBI Data Stage Coordinating Center
NHLBI 数据阶段协调中心
  • 批准号:
    10938108
  • 财政年份:
    2018
  • 资助金额:
    $ 98.22万
  • 项目类别:
NHLBI Data Stage Coordinating Center
NHLBI 数据阶段协调中心
  • 批准号:
    10710136
  • 财政年份:
    2018
  • 资助金额:
    $ 98.22万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 98.22万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 98.22万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 98.22万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 98.22万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 98.22万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 98.22万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 98.22万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 98.22万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 98.22万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 98.22万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了