Improving Research Efficiency through Better Descriptors
通过更好的描述符提高研究效率
基本信息
- 批准号:10334136
- 负责人:
- 金额:$ 36.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgeAlgorithmsAnatomyArchivesBRAIN initiativeBackBasic ScienceBehavior assessmentBioinformaticsBrainBrain imagingClinicalClinical ResearchCognitionCollaborationsCollectionCommon Data ElementCommunitiesComplementComputer softwareDataData CollectionData ElementData ProvenanceData SetData SourcesDescriptorDevelopmentDiseaseEcosystemEffectivenessEngineeringEnsureEnvironmentFAIR principlesFundingGenerationsGeneticGoalsHealthHumanImageInformaticsInternetInvestmentsKnowledgeLearningLibrariesLiteratureMetadataMissionModelingMultilingualismOntologyOperating SystemOutputParticipantPopulationProcessProliferatingProtocols documentationPublicationsRecommendationReportingReproducibilityResearchResearch PersonnelResourcesRunningScanningScienceSemanticsServicesStandardizationStructureTechnologyTerminologyTestingTimeTrainingTraining ActivityTraining SupportTrustVocabularyWorkanalytical toolbasecohortdata archivedata harmonizationdata managementdata modelingdata standardsdesigndigitalexperienceexperimental studyimprovedinformation modelinnovationinsightlight weightneuroimagingpeerresearch studysensorsoftware developmentsoundstatisticsstemsynergismtechnology research and developmenttool
项目摘要
TR&D Project 2: Improving Research Efficiency through Better Descriptors (DESCRIBE)
SUMMARY: The scale and complexity of neuroimaging research have grown exponentially over the last three
decades and have enabled new insights into human cognition in health and disease and development of new
imaging hardware, processing, and informatics technologies. As new information has proliferated into the
research ecosystem, there is a need to integrate this knowledge from publications, data sources, and analysis
tools. This integration has been hampered by limited harmonization of description across these digital outputs.
During the current period, this Technology Research and Development Project, TR&D2, has addressed some
of these challenges. We extended the Neuroimaging Data Model (NIDM) - a descriptor framework built on top
of the World Wide Web Consortium's Provenance Data Model (W3C-PROV) and backed by community-
developed ontologies. Using such standards we also created a set of technologies with our ReproNim projects
and partners to enable reproducible analytics, to harmonize data and results, and to gather standardized
provenance. This proposal aims to increase research efficiency and overall trust in scientific findings through
better description of digital objects and better provenance of analytics. To accomplish these overarching goals,
we will: 1) Formalize detailed and structured descriptors of all stages of a neuroimaging research workflow.
This is critical for interpreting and trusting scientific results. 2) Develop a resource to create and disseminate
Findable, Accessible, Interoperable, Reusable (FAIR) and robust scientific workflows. This will enable users to
trust and reuse existing and well-tested analyses, as well as disseminate their own scripts when such analyses
are not available. 3) Extend and harden existing ReproNim technologies in coordination with the community.
We will integrate our technologies through developers of other tools, thus making our technologies more
accessible to those who have limited technical experience. This effort will be complemented by training and
support for different user experience levels and use cases. We will deliver a set of technologies that allows
researchers to harmonize their output by design, from assessment and imaging data collection to final results.
These technologies will also support consolidation and reuse of existing workflows, with new processes being
developed only when necessary. Finally, our tools will support community-based generation, curation, and
management of standardized information. We will carry out this work in collaboration with the other ReproNim
technology research and development projects, and our collaborative and service projects. Together, we will
help researchers become more effective through increased efficiency in every facet of the research lifecycle.
TR&D2 technologies support the overall mission of ReproNim to improve the way neuroimaging research is
performed and reported, to enable a comprehensive set of data management, analysis and utilization
frameworks in support of both basic research and clinical activities, and to improve the reproducibility of
neuroimaging science and extend the value of our national investment in neuroimaging research.
TR&D项目2:通过更好的描述符提高研究效率(DESCRIBE)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Nelson Kennedy其他文献
David Nelson Kennedy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Nelson Kennedy', 18)}}的其他基金
Building a data science workforce to improve the reproducibility of rehabilitation research
建立数据科学队伍以提高康复研究的可重复性
- 批准号:
10576927 - 财政年份:2022
- 资助金额:
$ 36.55万 - 项目类别:
Building a data science workforce to improve the reproducibility of rehabilitation research
建立数据科学队伍以提高康复研究的可重复性
- 批准号:
10409273 - 财政年份:2022
- 资助金额:
$ 36.55万 - 项目类别:
A FAIR Data and Metadata Foundation for Reproducible Research
用于可重复研究的公平数据和元数据基础
- 批准号:
10334135 - 财政年份:2016
- 资助金额:
$ 36.55万 - 项目类别:
ReproNim: A Center for Reproducible Neuroimaging Computation
ReproNim:可重复神经影像计算中心
- 批准号:
10482411 - 财政年份:2016
- 资助金额:
$ 36.55万 - 项目类别:
Center for Reproducible Neuroimaging Computation (CRNC)
可重复神经影像计算中心 (CRNC)
- 批准号:
8999833 - 财政年份:2016
- 资助金额:
$ 36.55万 - 项目类别:
ReproNim: A Center for Reproducible Neuroimaging Computation
ReproNim:可重复神经影像计算中心
- 批准号:
10334134 - 财政年份:2016
- 资助金额:
$ 36.55万 - 项目类别:
Neuroimaging Informatics Tools and Resources Clearinghouse Outreach, Infrastructure, and Content Maintenance
神经影像信息学工具和资源 信息交换所外展、基础设施和内容维护
- 批准号:
9360121 - 财政年份:2016
- 资助金额:
$ 36.55万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 36.55万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 36.55万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 36.55万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 36.55万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 36.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 36.55万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 36.55万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 36.55万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 36.55万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 36.55万 - 项目类别:
Miscellaneous Programs