Processing and Repair of DNA Crosslinks
DNA 交联的加工和修复
基本信息
- 批准号:10333383
- 负责人:
- 金额:$ 180.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-10 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:BiochemicalBiochemistryBypassCancer EtiologyCarmustineCell CycleCellsCellular biologyChlorambucilCisplatinComplexCore FacilityDNADNA BindingDNA DamageDNA RepairDNA Repair GeneDNA biosynthesisDNA crosslinkDNA replication forkDNA-Binding ProteinsDNA-protein crosslinkDefectFanconi Anemia pathwayFanconi&aposs AnemiaFutureGene ExpressionGeneticGenomeGoalsHMGB1 geneHMGB2 geneHMGB3 geneIndividualInvestigationKnowledgeLesionMSH2 geneMSH3 geneMechlorethamineMedicalMelphalanMitomycin CModelingMolecularMutagenesisNitrosourea CompoundsPathway interactionsPeptidesPharmaceutical PreparationsPlatinumProcessProteinsPsoralensResearch PersonnelResearch Project GrantsRoleRouteServicesSourceVariantanalogbasebiomarker developmentcancer therapychemotherapeutic agentchemotherapycrosslinkexperimental studyimprovedindividual patientneoplastic cellnovelnucleasepreventprogramsrecruitrepairedscaffold
项目摘要
PROJECT SUMMARY
DNA crosslinks, including interstrand crosslinks (ICLs) and DNA-protein crosslinks (DPCs) are forms of DNA
damage that arise continuously in DNA from endogenous and natural sources. They must be removed in order
to allow accurate genome duplication and gene expression. Many chemotherapeutic agents induce ICLs
including nitrogen mustards and derivatives (melphalan, chlorambucil), psoralens, mitomycin C, platinum-
based compounds such as cisplatin, and nitrosoureas such as BCNU. Identification and future development of
biomarkers associated with ICL repair proficiency will facilitate precision medical treatment for individual
patients. Despite the importance of crosslinks in cancer etiology and treatment, mechanisms of DNA crosslink
repair are known only in outline, and many steps are simply assumed. An integrated, programmatic approach
involving four Research Projects and two service Cores will conduct experimental investigations under the
auspices of the Program and contribute, both individually and synergistically, to this theme. Each Overall
Goal/Specific Aim is independently engaged by each project using distinct and complementary approaches.
The Program Project is organized around three aims, representing goals of the project:
Aim 1: Determine how different pathways of crosslink repair are used or coordinated. The program will
investigate major gaps in knowledge about different crosslink repair pathways, including how nucleases or
complexes/components are recruited and used in different situations, variations of crosslink repair during the
cell cycle, action of crosslink repair at different configurations of model stalled replication forks, whether ICL
repair differs for different lesions, and the mechanism of error-free and mutagenic crosslink repair. Aim 2:
Understand functions of newly discovered and little-studied crosslink repair components. One block to
progress in understanding repair of ICLs is that there are a group of components that are known to be involved
in crosslink repair, but where mechanistic roles are unassigned or known only superficially. In this program the
investigators will cooperate to determine their functions. Major unknown components include SLX4IP (which
associates with SLX4); the HMGB1, HMGB2 and HMGB3 DNA binding proteins; the MSH2-MSH3 complex
(which binds DNA distortions); and UHRF1 (postulated as an alternative scaffold for delivery of nucleases).
Aim 3: Investigate the mechanisms of repair of DNA-protein crosslinks. There are likely to be several routes of
DPC repair and tolerance. Experiments will be undertaken to determine different modes of processing. Major
gaps in knowledge include the involvement of Fanconi anemia (FA) pathway proteins in repair and how
features of FA might be explained by defects in DPC repair. We will investigate involvement of replicative
bypass (translesion DNA synthesis) in tolerance of DNA-peptide crosslinks (modeling proteolytically processed
DPCs). We will also explore pathways that prevent or induce mutagenesis by DPCs.
项目总结
DNA交联物,包括链间交联物(ICL)和DNA-蛋白质交联物(DPC),都是DNA的形式
DNA中由内源和自然来源持续产生的损伤。必须按顺序移除它们
以实现准确的基因组复制和基因表达。多种化疗药物可诱发ICL
包括氮芥末及其衍生物(马法兰、百菌清)、补骨脂素、丝裂霉素C、铂-
以顺铂等为基础的化合物,以及BCNU等亚硝基化合物。生物多样性的识别与未来发展
与ICL修复熟练程度相关的生物标志物将促进个人的精准医疗
病人。尽管交联剂在癌症病因学和治疗中的重要性,但DNA交联剂的机制
修复只是大体知道,许多步骤都是假定的。一种综合的、程序化的方法
涉及四个研究项目和两个服务核心,将在
支持该计划,并单独和协同地为这一主题作出贡献。每一个整体
目标/具体目标由每个项目使用不同和互补的方法独立完成。
计划项目围绕三个目标组织,代表项目的目标:
目标1:确定如何使用或协调不同的交联链修复途径。该计划将
调查关于不同的交联链修复途径的主要知识差距,包括核酸酶或
复合体/组分被招募并在不同的情况下使用,在不同的情况下,交联剂修复的变化
细胞周期,不同构型的模型停滞复制叉处的交联链修复作用,无论ICL
修复对于不同的病变是不同的,并且无错误和突变的交联物修复的机制是不同的。目标2:
了解新发现的和鲜有研究的交叉链接修复组件的功能。一个街区到
了解ICL修复的进展是有一组已知涉及的组件
在交联链修复中,但机械性角色没有被分配或只是表面上知道的。在这个节目中,
调查人员将合作确定他们的职能。主要未知组件包括SLX4IP(它
与SLX4相关);HMGB1、HMGB2和HMGB3 DNA结合蛋白;MSH2-MSH3复合体
(结合DNA扭曲);以及uhrf1(被认为是运送核酸酶的替代支架)。
目的3:探讨DNA-蛋白质交联链的修复机制。可能会有几条路线
DPC修复和耐受性。将进行实验以确定不同的处理模式。主修
知识空白包括Fanconi贫血(FA)途径蛋白参与修复以及如何参与修复
FA的特征可能与DPC修复的缺陷有关。我们将调查Replicative参与其中
旁路(跨病变DNA合成)对DNA-多肽交联物的耐受性(蛋白水解法模拟
民主党议员)。我们还将探索预防或诱导DPC突变的途径。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TDP1-independent pathways in the process and repair of TOP1-induced DNA damage.
- DOI:10.1038/s41467-022-31801-7
- 发表时间:2022-07-22
- 期刊:
- 影响因子:16.6
- 作者:Zhang, Huimin;Xiong, Yun;Su, Dan;Wang, Chao;Srivastava, Mrinal;Tang, Mengfan;Feng, Xu;Huang, Min;Chen, Zhen;Chen, Junjie
- 通讯作者:Chen, Junjie
FAM35A associates with REV7 and modulates DNA damage responses of normal and BRCA1-defective cells.
- DOI:10.15252/embj.201899543
- 发表时间:2018-06-15
- 期刊:
- 影响因子:0
- 作者:Tomida J;Takata KI;Bhetawal S;Person MD;Chao HP;Tang DG;Wood RD
- 通讯作者:Wood RD
Formation and repair of DNA-protein crosslink damage.
DNA-蛋白质交联损伤的形成和修复。
- DOI:10.1007/s11427-017-9183-4
- 发表时间:2017-10
- 期刊:
- 影响因子:0
- 作者:Klages-Mundt NL;Li L
- 通讯作者:Li L
O-GlcNAcylation of High Mobility Group Box 1 (HMGB1) Alters Its DNA Binding and DNA Damage Processing Activities.
- DOI:10.1021/jacs.1c06192
- 发表时间:2021-10-06
- 期刊:
- 影响因子:15
- 作者:Balana AT;Mukherjee A;Nagpal H;Moon SP;Fierz B;Vasquez KM;Pratt MR
- 通讯作者:Pratt MR
Disruption of DNA polymerase ζ engages an innate immune response.
- DOI:10.1016/j.celrep.2021.108775
- 发表时间:2021-02-23
- 期刊:
- 影响因子:8.8
- 作者:Martin SK;Tomida J;Wood RD
- 通讯作者:Wood RD
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD D WOOD其他文献
RICHARD D WOOD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD D WOOD', 18)}}的其他基金
Biochemical reconstitution and inhibition of TMEJ
TMEJ 的生化重建和抑制
- 批准号:
10202521 - 财政年份:2020
- 资助金额:
$ 180.56万 - 项目类别:
Biochemical reconstitution and inhibition of TMEJ
TMEJ 的生化重建和抑制
- 批准号:
10468630 - 财政年份:2020
- 资助金额:
$ 180.56万 - 项目类别:
Biochemical reconstitution and inhibition of TMEJ
TMEJ 的生化重建和抑制
- 批准号:
10640890 - 财政年份:2020
- 资助金额:
$ 180.56万 - 项目类别:
Function of REV3L in limiting oncogenesis via DNA damage tolerance
REV3L 通过 DNA 损伤耐受限制肿瘤发生的功能
- 批准号:
8011462 - 财政年份:2009
- 资助金额:
$ 180.56万 - 项目类别:
Function of REV3L in limiting oncogenesis via DNA damage tolerance
REV3L 通过 DNA 损伤耐受限制肿瘤发生的功能
- 批准号:
7577037 - 财政年份:2009
- 资助金额:
$ 180.56万 - 项目类别:
Function of REV3L in limiting oncogenesis via DNA damage tolerance
REV3L 通过 DNA 损伤耐受限制肿瘤发生的功能
- 批准号:
7758283 - 财政年份:2009
- 资助金额:
$ 180.56万 - 项目类别:
Function of REV3L in limiting oncogenesis via DNA damage tolerance
REV3L 通过 DNA 损伤耐受限制肿瘤发生的功能
- 批准号:
8403818 - 财政年份:2009
- 资助金额:
$ 180.56万 - 项目类别:
Function of REV3L in limiting oncogenesis via DNA damage tolerance
REV3L 通过 DNA 损伤耐受限制肿瘤发生的功能
- 批准号:
8204618 - 财政年份:2009
- 资助金额:
$ 180.56万 - 项目类别:
COMPUTER-AIDED DESIGN, SYNTHESIS, AND TESTING OF A NOVEL FAMILY OF TRIAZOLE-BASED
基于三唑的新型家族的计算机辅助设计、合成和测试
- 批准号:
7481409 - 财政年份:2008
- 资助金额:
$ 180.56万 - 项目类别:
相似海外基金
REU Site: Summer Undergraduate Research in Chemistry and Biochemistry at Miami University
REU 网站:迈阿密大学化学与生物化学暑期本科生研究
- 批准号:
2349468 - 财政年份:2024
- 资助金额:
$ 180.56万 - 项目类别:
Continuing Grant
REU Site: Research Experiences for Community College Students in Chemistry and Biochemistry at Texas A&M University-Commerce
REU 网站:德克萨斯 A 社区学院化学和生物化学专业学生的研究经验
- 批准号:
2349522 - 财政年份:2024
- 资助金额:
$ 180.56万 - 项目类别:
Standard Grant
Supporting Talented, Low-Income Undergraduate and Graduate Students in Chemistry and Biochemistry through Career Explorations, Research Experiences, and Scholarships
通过职业探索、研究经验和奖学金支持化学和生物化学领域有才华的低收入本科生和研究生
- 批准号:
2322722 - 财政年份:2024
- 资助金额:
$ 180.56万 - 项目类别:
Standard Grant
Conference: Active Learning Communities in Biochemistry
会议:生物化学主动学习社区
- 批准号:
2411535 - 财政年份:2024
- 资助金额:
$ 180.56万 - 项目类别:
Standard Grant
Hydrogen and carbon dioxide biochemistry in the bacterial energy-transducing membrane.
细菌能量转换膜中的氢气和二氧化碳生物化学。
- 批准号:
BB/Y004302/1 - 财政年份:2024
- 资助金额:
$ 180.56万 - 项目类别:
Research Grant
ORCC: The Role of Betaine Lipid Biochemistry in Coral Thermal Tolerance
ORCC:甜菜碱脂质生物化学在珊瑚耐热性中的作用
- 批准号:
2307516 - 财政年份:2023
- 资助金额:
$ 180.56万 - 项目类别:
Continuing Grant
Supporting low-income student success in STEM through community, mentoring, and immersive research in biology and biochemistry
通过生物学和生物化学领域的社区、指导和沉浸式研究,支持低收入学生在 STEM 方面取得成功
- 批准号:
2221216 - 财政年份:2023
- 资助金额:
$ 180.56万 - 项目类别:
Standard Grant
Biochemistry of Eukaryotic Replication Fork and DNA Repair
真核复制叉的生物化学和 DNA 修复
- 批准号:
10550045 - 财政年份:2023
- 资助金额:
$ 180.56万 - 项目类别:
In vivo 2-photon imaging of retinal biochemistry before and after retinal organoid transplantation
视网膜类器官移植前后视网膜生物化学的体内2光子成像
- 批准号:
10643273 - 财政年份:2023
- 资助金额:
$ 180.56万 - 项目类别: