Embryonic vascular stem-progenitors for treatment of ischemic retinopathies
用于治疗缺血性视网膜病的胚胎血管干祖细胞
基本信息
- 批准号:10334409
- 负责人:
- 金额:$ 53.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAnimal ModelAutologousBackBlindnessBlood VesselsBlood capillariesCXCR4 geneCell LineCell TherapyCellsCessation of lifeDNA MethylationDefectDevelopmentDiabetes MellitusDiabetic RetinopathyDiseaseEmbryoEndothelial CellsEngraftmentEpiblastEpigenetic ProcessEyeFibroblastsFutureGene ExpressionGenerationsGenome StabilityHistonesHumanIn VitroIschemiaLegal patentLesionMCAM geneMediatingMemoryMetabolicModelingMolecularMusNatural regenerationNeural RetinaPECAM1 genePathologicPathologyPathway interactionsPatientsPericytesRegenerative MedicineReperfusion InjuryReperfusion TherapyReportingRetinaRetinal DiseasesSecondary toTankyraseTherapeuticTissue DifferentiationTissuesTransplant RecipientsTransplantationVascular DiseasesVascular Endothelial CellVisionbasecell bankdiabeticeffectiveness evaluationendothelial stem cellepigenetic memoryepigenomegenome integrityimprovedimproved functioningin vivoin vivo evaluationinduced pluripotent stem cellinhibitormouse modelneuron apoptosisneurovascular injurynovelpluripotencypre-clinicalprogenitorpromoterregeneration functionregeneration potentialrelating to nervous systemrepairedretina blood vessel structureretinal damageretinal ischemiaself-renewalsmall moleculestemstem cellstherapeutic evaluationtype I diabeticvein occlusion
项目摘要
Branch vein occlusion (BVO) and diabetic retinopathy (DR) are major causes of new onset blindness in
the US. These vascular disorders result in acellular capillaries secondary to ischemic death of retinal
vascular endothelial cells (ECs) and contractile pericytes. If acellular retinal blood vessels could be
regenerated with autologous or cell-banked self-renewing vascular-pericytic stem-progenitors, ischemia
could be relieved, and end stage blindness reversed or stabilized in these vasculopathies. Our group
established the feasibility of transplanting patient-specific embryonic vascular progenitors (VP) with
pericytic potential directly into the eye, following differentiation from human induced pluripotent stem
cells (hiPSC). We also established a novel tankyrase/PARP inhibitor-based small molecule cocktail for
reversion of conventional, lineage-primed hiPSC to ‘naïve’ hiPSCs (N-hiPSCs) that possessed a more
primitive epiblast state with higher functional pluripotency. The regenerative potential of naïve VP (N-VP)
differentiated from normal and diseased N-hiPSC was significantly more prolific relative to primed,
conventional hiPSC. For example, naive diabetic vascular progenitors (N-DVP) differentiated from
patient-specific naïve-reverted diabetic hiPSC (N-DhiPSC) possessed higher vascular functionality,
maintained greater genomic stability, harbored decreased lineage-primed gene expression, and were
more efficient in migrating to and re-vascularizing the deep neural layers of the ischemic retina than
isogenic diabetic vascular progenitors (DVP) from conventional, primed DhiPSC. In this proposal, we
develop the potential of N-VP for treatment of ischemic retinopathies. We will employ a humanized
animal model that mimics retinal ischemia [i.e., ischemia/reperfusion (I/R) injury] for testing the
therapeutic capacity of human N-DVP to form patent blood vessels, rescue ischemic retina, and improve
visual function. We will test the in vivo developmental potential of N-DVP to efficiently differentiate to
ECs and multipotent pericytic stem-progenitors following long-term engraftment in an ischemia-damaged
retinal niche. We will also aim to further improve our approach for generating unlimited amounts of
epigenetically-plastic, pristine, non-diseased naïve embryonic progenitors for cellular therapies by
probing how N-hiPSC reprogramming erases dysfunctional epigenetic donor cell memory and diabetes-
associated metabolic aberrations with greater efficiency than conventional hiPSC reprogramming. These
studies will outline a future pathway for the efficient synchronous generation of naïve vascular and
retinal stem-progenitors from the same N-hiPSC line for a more effective and comprehensive
regeneration of diseased retina. More broadly, we will develop the pre-clinical utility of this novel class of
human vascular-pericytic stem cells that possess high epigenetic plasticity, improved functionality, and
potentially high impact for ocular regenerative medicine.
分支静脉阻塞(BVO)和糖尿病视网膜病变(DR)是新发失明的主要原因
美国。这些血管疾病导致继发于视网膜缺血性死亡的无细胞毛细血管
血管内皮细胞(EC)和收缩周细胞。如果无细胞视网膜血管可以
用自体或细胞库自我更新血管周细胞干祖细胞再生,缺血
这些血管病变的症状可以得到缓解,并且终末期失明得到逆转或稳定。我们组
建立了移植患者特异性胚胎血管祖细胞(VP)的可行性
从人类诱导多能干细胞分化后,周细胞电位直接进入眼睛
细胞(hiPSC)。我们还建立了一种基于端锚聚合酶/PARP 抑制剂的新型小分子混合物
将传统的、谱系引发的 hiPSC 逆转为“原始”hiPSC(N-hiPSC),该 hiPSC 具有更多
具有较高功能多能性的原始外胚层状态。幼稚 VP 的再生潜力 (N-VP)
从正常和患病的 N-hiPSC 中分化出来的 N-hiPSC 相对于引发的 N-hiPSC 的繁殖力显着更高,
传统 hiPSC。例如,幼稚糖尿病血管祖细胞(N-DVP)分化为
患者特异性的幼稚回复型糖尿病 hiPSC (N-DhiPSC) 具有更高的血管功能,
保持更高的基因组稳定性,降低谱系引发的基因表达,并且
与缺血性视网膜深层神经层的迁移和血管重建相比,它更有效
来自传统、引发的 DhiPSC 的同基因糖尿病血管祖细胞 (DVP)。在这个提案中,我们
开发 N-VP 治疗缺血性视网膜病的潜力。我们将采用人性化的
模拟视网膜缺血[即缺血/再灌注(I/R)损伤]的动物模型,用于测试
人 N-DVP 形成开放血管、挽救缺血性视网膜、改善视力的治疗能力
视觉功能。我们将测试 N-DVP 的体内发育潜力,以有效分化
长期植入缺血损伤后的内皮细胞和多能周细胞干祖细胞
视网膜生态位。我们还将致力于进一步改进我们产生无限数量的方法
表观遗传可塑性、原始、无病的幼稚胚胎祖细胞,用于细胞治疗
探究 N-hiPSC 重编程如何消除功能失调的表观遗传供体细胞记忆和糖尿病 -
与传统 hiPSC 重编程相比,相关代谢异常的效率更高。这些
研究将勾勒出一条有效同步生成天然血管和
来自同一 N-hiPSC 系的视网膜干祖细胞,以获得更有效和更全面的
患病视网膜的再生。更广泛地说,我们将开发这类新型药物的临床前效用
人类血管周细胞干细胞具有高表观遗传可塑性、改进的功能和
对眼再生医学具有潜在的巨大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ELIAS T. ZAMBIDIS其他文献
ELIAS T. ZAMBIDIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ELIAS T. ZAMBIDIS', 18)}}的其他基金
Embryonic vascular stem-progenitors for treatment of ischemic retinopathies
用于治疗缺血性视网膜病的胚胎血管干祖细胞
- 批准号:
10557078 - 财政年份:2021
- 资助金额:
$ 53.48万 - 项目类别:
Functional Vascular Progenitors from Naive Human iPSC
来自原始人类 iPSC 的功能性血管祖细胞
- 批准号:
9059743 - 财政年份:2015
- 资助金额:
$ 53.48万 - 项目类别:
Functional Vascular Progenitors from Naive Human iPSC
来自原始人类 iPSC 的功能性血管祖细胞
- 批准号:
9220844 - 财政年份:2015
- 资助金额:
$ 53.48万 - 项目类别:
Functional Vascular Progenitors from Naive Human iPSC
来自原始人类 iPSC 的功能性血管祖细胞
- 批准号:
8797928 - 财政年份:2015
- 资助金额:
$ 53.48万 - 项目类别:
Pluripotent Stem Cell Vascular Therapies for Ischemic Retinopathies
缺血性视网膜病的多能干细胞血管疗法
- 批准号:
8758998 - 财政年份:2014
- 资助金额:
$ 53.48万 - 项目类别:
Pluripotent Stem Cell Vascular Therapies for Ischemic Retinopathies
缺血性视网膜病的多能干细胞血管疗法
- 批准号:
8892184 - 财政年份:2014
- 资助金额:
$ 53.48万 - 项目类别:
Pluripotent Stem Cell Vascular Therapies for Ischemic Retinopathies
缺血性视网膜病的多能干细胞血管疗法
- 批准号:
9102160 - 财政年份:2014
- 资助金额:
$ 53.48万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 53.48万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 53.48万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 53.48万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 53.48万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 53.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 53.48万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 53.48万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 53.48万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 53.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 53.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




