Harmonizing multi-site diffusion MRI acquisitions for neuroscientific analysis across ages and brain disorders
协调多部位扩散 MRI 采集,用于跨年龄和脑部疾病的神经科学分析
基本信息
- 批准号:10334502
- 负责人:
- 金额:$ 78.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdolescentAdultAgeAlgorithmsAlzheimer&aposs DiseaseAnatomyAnisotropyArchitectureAtlasesBrainBrain DiseasesBrain StemBrain imagingCategoriesCerebellumChildCloud ComputingCommunitiesComplexComputer softwareDataData AnalysesData SetDatabasesDevelopmentDiagnosticDictionaryDiffusion Magnetic Resonance ImagingDiseaseFascicleFiberGenderGrantHeadHealthHumanHuman ResourcesInfrastructureJointsKnowledgeLiteratureLongevityMRI ScansMajor Depressive DisorderManualsMapsMental disordersMethodsMonkeysNational Institute of Mental HealthNeurobiologyOnline SystemsOntologyOutcomePhenotypeProcessPublicationsReal-Time SystemsResearchResearch InfrastructureResearch PersonnelResearch Project GrantsSignal TransductionSiteSubjects SelectionsSystemTechnologyTestingTimeTissuesVendorVisualVisualizationWorkage groupanalysis pipelineantenatalarchive dataarchived dataautism spectrum disorderautomated algorithmbasebiobankbrain magnetic resonance imagingcloud basedcognitive developmentcohortcomputing resourcesconnectomedata archivedata explorationdata harmonizationgray matterhuman subjectimprovedinterestlarge datasetslarge scale datamagnetic fieldmathematical algorithmneonateneurodevelopmentneuroimagingnovelopen sourcereconstructionrelating to nervous systemrepositoryterabytethree-dimensional visualizationtooltractographywhite matteryoung adult
项目摘要
Abstract(
!
Diffusion MRI (dMRI) is the only non-invasive method that can map the living human brain’s connections and is
critical for understanding mental disorders. Several large studies such as the Human Connectome Project (HCP)
and the Adolescent Brain Cognitive Development (ABCD) have collected or are poised to collect diffusion MRI
data from over 30,000 subjects. However, an important challenge is that these datasets collected from different
scanners cannot be pooled for joint analysis due to large inter-scanner (inter-site) differences, caused by
differences in vendor specific software for data reconstruction, the sensitivity of head coils etc. These scanner
differences are often larger than the effect sizes observed between groups in psychiatric disorders. A second
challenge for large-scale data analysis is the lack of a single consistent ontology-based definition and automated
extraction of white matter connections across the lifespan (including neonates and children). A third challenge is
the sheer size of the combined dMRI datasets (several terabytes), limiting the ability of researchers to test
hypotheses as this requires expertise and complex computational resources for processing, storing, and
visualizing such large volumes of data. In this grant, we propose to address these challenges to enable large-
scale data-intensive analysis of dMRI data. Specifically, in Aim 1, we propose to develop novel mathematical
algorithms to remove scanner-specific differences from data acquired at multiple sites. We will harmonize 10,000
subjects from the ABCD study acquired at 21 different sites, another 10,000 subjects from the HCP initiative
spanning the entire lifespan and numerous disease indications and 10,000 subjects from the Healthy Brain
Network. All the harmonized datasets (30,000 subjects), will be shared with the community using the NIMH data
archive (NDA). In Aim 2, we will develop a formal ontology-based system for defining 189 white matter fascicles
using neuroanatomical landmarks known from human and monkey literature on brain connectivity. Our main
focus will be to develop novel algorithms for automated and consistent clustering and extraction of these fiber
bundles spanning the entire human lifespan including neonates. To enable widespread use without the need for
demanding computational resources and technical knowledge, in Aim 3, we will develop a web-based system
for real-time 3D viewing and querying of the harmonized data and fascicles (integrating with NIMH data archive
infrastructure) for a user-defined selection of subjects from the entire cohort of subjects across different
diagnostic categories. Overall, the potential impact of this framework is significant, as it will, for the first time,
allow a large-scale data-intensive analysis of dMRI data to study neurodevelopment as well as mental disorders
cutting across diagnostic boundaries.
!
摘要(
!
扩散MRI(dMRI)是唯一一种可以绘制活体人脑连接的非侵入性方法,
对理解精神疾病至关重要几项大型研究,如人类连接组计划(HCP)
和青少年大脑认知发展(ABCD)已经收集或准备收集扩散MRI
超过30,000名受试者的数据。然而,一个重要的挑战是,这些数据集收集自不同的
由于扫描仪间(研究中心间)差异较大,无法合并扫描仪进行联合分析,
用于数据重建的供应商特定软件的差异、头部线圈的灵敏度等。这些扫描仪
在精神疾病组之间观察到的差异往往大于效应量。第二
大规模数据分析的挑战是缺乏一个一致的基于本体的定义和自动化的
提取整个生命周期(包括新生儿和儿童)的白色物质连接。第三个挑战是
组合的dMRI数据集的绝对大小(几TB),限制了研究人员测试的能力
假设,因为这需要专业知识和复杂的计算资源来处理、存储和
可视化如此大量的数据。在这项赠款中,我们建议解决这些挑战,使大-
dMRI数据的规模数据密集型分析。具体而言,在目标1中,我们建议开发新的数学
从多个站点获取的数据中去除扫描仪特定差异的算法。我们将协调10,000
来自ABCD研究的受试者来自21个不同的研究中心,另外10,000名受试者来自HCP倡议
跨越整个生命周期和许多疾病适应症,10,000名健康大脑受试者
网络所有协调数据集(30,000名受试者)将使用NIMH数据与社区共享
存档(NDA)。在目标2中,我们将开发一个正式的基于本体的系统,用于定义189个白色物质束
使用从人类和猴子关于大脑连接的文献中已知的神经解剖学标志。我们的主要
重点将是开发新的算法,自动和一致的聚类和提取这些纤维
包括新生儿在内的整个人类生命周期。为了能够广泛使用,
要求计算资源和技术知识,在目标3中,我们将开发一个基于Web的系统
用于协调数据和分册的实时3D查看和查询(与NIMH数据存档集成
基础设施),用于从不同的受试者的整个队列中用户定义的受试者选择。
诊断类别。总的来说,这一框架的潜在影响是巨大的,因为它将首次,
允许对dMRI数据进行大规模的数据密集型分析,以研究神经发育和精神障碍
跨越诊断界限。
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lauren Jean O'Donnell其他文献
Lauren Jean O'Donnell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lauren Jean O'Donnell', 18)}}的其他基金
Harmonizing multi-site diffusion MRI acquisitions for neuroscientific analysis across ages and brain disorders
协调多部位扩散 MRI 采集,用于跨年龄和脑部疾病的神经科学分析
- 批准号:
9884823 - 财政年份:2019
- 资助金额:
$ 78.06万 - 项目类别:
Harmonizing multi-site diffusion MRI acquisitions for neuroscientific analysis across ages and brain disorders
协调多部位扩散 MRI 采集,用于跨年龄和脑部疾病的神经科学分析
- 批准号:
10553703 - 财政年份:2019
- 资助金额:
$ 78.06万 - 项目类别:
Open source diffusion MRI technology for brain cancer research
用于脑癌研究的开源扩散 MRI 技术
- 批准号:
9324191 - 财政年份:2015
- 资助金额:
$ 78.06万 - 项目类别:
Novel diffusion MRI analysis for detection of mild traumatic brain injury
用于检测轻度创伤性脑损伤的新型扩散 MRI 分析
- 批准号:
8968514 - 财政年份:2015
- 资助金额:
$ 78.06万 - 项目类别:
Open source diffusion MRI technology for brain cancer research
用于脑癌研究的开源扩散 MRI 技术
- 批准号:
8971083 - 财政年份:2015
- 资助金额:
$ 78.06万 - 项目类别:
Open source diffusion MRI technology for brain cancer research
用于脑癌研究的开源扩散 MRI 技术
- 批准号:
9147560 - 财政年份:2015
- 资助金额:
$ 78.06万 - 项目类别:
相似海外基金
Enhancing Structural Competency in School-Based Health Centers to Address LGBTQ+ Adolescent Health Equity
增强校本健康中心的结构能力,以解决 LGBTQ 青少年健康公平问题
- 批准号:
10608426 - 财政年份:2023
- 资助金额:
$ 78.06万 - 项目类别:
Application and feasability of a brief digital screening tool to address parental and adolescent tobacco and electronic cigarette use in pediatric medical care - a pilot study
简短的数字筛查工具的应用和可行性,以解决儿科医疗中父母和青少年烟草和电子烟的使用问题 - 一项试点研究
- 批准号:
486580 - 财政年份:2022
- 资助金额:
$ 78.06万 - 项目类别:
Studentship Programs
Co-design of an intervention to address alcohol use among adolescent boys and young men in Tanzania
共同设计一项干预措施,解决坦桑尼亚青春期男孩和年轻男性的饮酒问题
- 批准号:
MR/V032380/1 - 财政年份:2022
- 资助金额:
$ 78.06万 - 项目类别:
Research Grant
Complex intervention to optimise adolescent BMI pre-conception to address the double burden of malnutrition: A RCT in rural and urban South Africa
优化青少年孕前体重指数以解决营养不良的双重负担的复杂干预措施:南非农村和城市的随机对照试验
- 批准号:
MR/V005790/1 - 财政年份:2021
- 资助金额:
$ 78.06万 - 项目类别:
Research Grant
Application of a brief digital screening tool to address parental and adolescent tobacco and electronic cigarette use in pediatric medical care
应用简短的数字筛查工具来解决儿科医疗中父母和青少年烟草和电子烟的使用问题
- 批准号:
455984 - 财政年份:2021
- 资助金额:
$ 78.06万 - 项目类别:
Operating Grants
Complex intervention to optimise adolescent BMI pre-conception to address the double burden of malnutrition: A RCT in rural and urban South Africa
优化青少年孕前体重指数以解决营养不良的双重负担的复杂干预措施:南非农村和城市的随机对照试验
- 批准号:
MR/V005790/2 - 财政年份:2021
- 资助金额:
$ 78.06万 - 项目类别:
Research Grant
Development of the Cannabis Actions and Practices (CAP): A Parent-Focused Intervention to Address Adolescent Marijuana Use
大麻行动和实践 (CAP) 的发展:以家长为中心的干预措施,解决青少年大麻使用问题
- 批准号:
10057761 - 财政年份:2020
- 资助金额:
$ 78.06万 - 项目类别:
Development of the Cannabis Actions and Practices (CAP): A Parent-Focused Intervention to Address Adolescent Marijuana Use
大麻行动和实践 (CAP) 的发展:以家长为中心的干预措施,解决青少年大麻使用问题
- 批准号:
10213683 - 财政年份:2020
- 资助金额:
$ 78.06万 - 项目类别:
Targeted interventions to address the multi-level effects of gender-based violence on PrEP uptake and adherence among adolescent girls and young women in Kenya
有针对性的干预措施,以解决性别暴力对肯尼亚少女和年轻妇女接受和坚持 PrEP 的多层面影响
- 批准号:
9403567 - 财政年份:2017
- 资助金额:
$ 78.06万 - 项目类别:
Designing targeted interventions to address HIV vulnerabilities and improve clinical outcomes among conflict affected adolescent girls and young women under 25 in Northern Uganda
设计有针对性的干预措施,以解决乌干达北部受冲突影响的少女和 25 岁以下年轻妇女的艾滋病毒脆弱性并改善临床结果
- 批准号:
356145 - 财政年份:2016
- 资助金额:
$ 78.06万 - 项目类别:
Operating Grants