Computational and Experimental Modeling of Cardiomyocyte Proliferation
心肌细胞增殖的计算和实验模型
基本信息
- 批准号:10337761
- 负责人:
- 金额:$ 70.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAlgorithmsAmericanBiological AssayBiological ModelsCandidate Disease GeneCardiacCardiac MyocytesCardiologyCell CycleCell Differentiation processCellsComputer ModelsDNA biosynthesisDataDevelopmentExperimental ModelsFutureGenesHeartHeart failureHematopoieticHumanImageIn VitroInjuryLiteratureLogicMammalsMeasuresMethodologyMethodsModelingMolecularMolecular BiologyMusMyocardiumNatural regenerationNeonatalNetwork-basedOrganOutcomePathway interactionsPhenotypePrevalenceProteinsRegulationReproducibilitySignal TransductionSystemTestingTherapeuticTransforming Growth Factor alphaTransforming Growth Factor betaValidationWorkbasecardiac regenerationcell regenerationexperienceexperimental studygene discoverygenome-widein vivoin vivo regenerationinduced pluripotent stem cell derived cardiomyocytesinnovationinsightknock-downlive cell microscopymolecular modelingmouse modelnetwork modelsnovelorgan regenerationpostnatal developmentpredictive modelingprenatalregeneration potentialregenerativeregenerative therapyscreeningskeletalstem cell differentiationstem cellstherapeutic candidatetherapeutic target
项目摘要
Summary
Heart failure arises in large part due to the very limited ability of cardiomyocytes to regenerate following injury.
Recent studies have identified some molecular regulators of cardiomyocyte proliferation in mammals, but the
field lacks an understanding of how these and yet-to-be identified components work as a system to regulate
cardiomyocyte proliferation. A better understanding of the pathways that control CM proliferation and cell cycle
exit is needed in order to develop strategies that stimulate CM proliferation as a regenerative therapy. Here, we
integrate innovative computational and experimental methods to develop a systems-level understanding of
cardiomyocyte proliferation. First, we develop a literature-based computational model of the molecular network,
comprising known regulators of cardiomyocyte proliferation. This network model is expanded mechanistically
to include novel regulators of cardiomyocyte proliferation that we have discovered through a genome-wide
phenotypic screen, including several in a TGF-beta module. Model-predicted regulators within this TGF-beta
module are validated experimentally in mouse cardiomyocytes, human induced pluripotent stem-cell derived
cardiomyocytes, and an in vivo mouse model of cardiac regeneration. Overall, this study will provide novel
candidate therapeutic targets for cardiomyocyte proliferation, the first mechanistic model integrating these
candidates and known regulators of cardiomyocyte proliferation, and experimental validation that the model
can predict network perturbations that enhance cardiomyocyte proliferation in vitro and in vivo.
总结
心力衰竭的发生在很大程度上是由于心肌细胞在损伤后再生的能力非常有限。
最近的研究已经确定了哺乳动物心肌细胞增殖的一些分子调节因子,但
该领域缺乏对这些和尚未确定的组件如何作为一个系统进行调节的理解
心肌细胞增殖更好地了解控制CM增殖和细胞周期的途径
为了开发刺激CM增殖作为再生疗法的策略,需要退出。这里我们
整合创新计算和实验方法,以发展系统级的理解
心肌细胞增殖首先,我们开发了一个基于文献的分子网络计算模型,
包括已知的心肌细胞增殖调节剂。这个网络模型是机械地扩展的
包括我们通过全基因组研究发现的心肌细胞增殖的新调节因子,
表型筛选,包括TGF-β模块中的几个。模型预测的TGF-β调节因子
模块在小鼠心肌细胞、人诱导多能干细胞衍生的
心肌细胞和心脏再生的体内小鼠模型。总的来说,这项研究将提供新的
心肌细胞增殖的候选治疗靶点,第一个整合这些机制的模型,
候选人和已知的心肌细胞增殖的调节剂,以及实验验证,该模型
可以预测在体外和体内增强心肌细胞增殖的网络扰动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey J. Saucerman其他文献
Mechanical regulation of gene expression in cardiac myocytes and fibroblasts
心肌细胞和成纤维细胞中基因表达的机械调节
- DOI:
10.1038/s41569-019-0155-8 - 发表时间:
2019-01-25 - 期刊:
- 影响因子:44.200
- 作者:
Jeffrey J. Saucerman;Philip M. Tan;Kyle S. Buchholz;Andrew D. McCulloch;Jeffrey H. Omens - 通讯作者:
Jeffrey H. Omens
Modeling Nitric Oxide Regulation Of Ec Coupling In Cardiac Myocytes
- DOI:
10.1016/j.bpj.2008.12.2668 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Lulu Chu;Sa Ra Park;Mayank Tandon;William Guilford;Jeffrey J. Saucerman - 通讯作者:
Jeffrey J. Saucerman
Validating a Model of Nitric Oxide-Ca<sup>2+</sup> Crosstalk in Cardiac Myocytes
- DOI:
10.1016/j.bpj.2010.12.656 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Renata Polanowska-Grabowska;Sa Ra Park;Jeffrey J. Saucerman - 通讯作者:
Jeffrey J. Saucerman
Netflux: Biological Network Modeling for Biologists and Students
- DOI:
10.1016/j.bpj.2010.12.1971 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Stephen T. Dang;Jeffrey J. Saucerman - 通讯作者:
Jeffrey J. Saucerman
Analysis of Differential Gene Expression in Response to Anisotropic Stretch using a Systems Model of Cardiac Myocyte Mechanotransduction
- DOI:
10.1016/j.bpj.2019.11.2558 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Shulin Cao;Kyle Buchholz;Philip M. Tan;Yasser Aboelkassem;Jennifer C. Stowe;Jeffrey J. Saucerman;Jeffrey Omens;Andrew D. McCulloch - 通讯作者:
Andrew D. McCulloch
Jeffrey J. Saucerman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey J. Saucerman', 18)}}的其他基金
Systems Pharmacology Model of Cardiac Hypertrophy
心脏肥大的系统药理学模型
- 批准号:
10598591 - 财政年份:2022
- 资助金额:
$ 70.91万 - 项目类别:
Computational and Experimental Modeling of Cardiomyocyte Proliferation
心肌细胞增殖的计算和实验模型
- 批准号:
10544013 - 财政年份:2022
- 资助金额:
$ 70.91万 - 项目类别:
Systems Pharmacology Model of Cardiac Hypertrophy
心脏肥大的系统药理学模型
- 批准号:
10418194 - 财政年份:2022
- 资助金额:
$ 70.91万 - 项目类别:
Quantitative analysis of cAMP compartmentation in heart
心脏中 cAMP 区室的定量分析
- 批准号:
7860607 - 财政年份:2009
- 资助金额:
$ 70.91万 - 项目类别:
Quantitative analysis of cAMP compartmentation in heart
心脏中 cAMP 区室的定量分析
- 批准号:
8501641 - 财政年份:2009
- 资助金额:
$ 70.91万 - 项目类别:
Quantitative analysis of cAMP compartmentation in heart
心脏中 cAMP 区室的定量分析
- 批准号:
7565003 - 财政年份:2009
- 资助金额:
$ 70.91万 - 项目类别:
Quantitative analysis of cAMP compartmentation in heart
心脏中 cAMP 区室的定量分析
- 批准号:
8150622 - 财政年份:2009
- 资助金额:
$ 70.91万 - 项目类别:
Quantitative analysis of cAMP compartmentation in heart
心脏中 cAMP 区室的定量分析
- 批准号:
8305508 - 财政年份:2009
- 资助金额:
$ 70.91万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 70.91万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 70.91万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 70.91万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 70.91万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 70.91万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 70.91万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 70.91万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 70.91万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 70.91万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 70.91万 - 项目类别:
Research Grant














{{item.name}}会员




