A Novel Role for Local Striatal Interneuron Regulation of Goal-Directed Action
局部纹状体中间神经元调节目标导向行动的新作用
基本信息
- 批准号:10338165
- 负责人:
- 金额:$ 56.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-07 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAnatomyAnimalsAutomobile DrivingBehaviorBehavioralCalciumCalcium SignalingCellsCognitiveComplexCorpus striatum structureDataDendritesDopamineDown-RegulationElectrophysiology (science)Excitatory SynapseExhibitsGoalsImageInterneuronsLaser Scanning MicroscopyLearningLiteratureMapsMeasuresMediatingMediator of activation proteinMethodsMicrodialysisMotivationMotorMotor outputNeuronsOperant ConditioningOpticsOutcomeOutputPathway interactionsPerformancePeriodicityPharmacologyPhysiologicalPopulationPopulation HeterogeneityProcessPropertyRegulationRewardsRoleScanningShapesSignal TransductionSliceSpecificitySynapsesSynaptic plasticitySystemTestingThalamic structureVertebral columnViralWorkcell typedopaminergic neurondriving behaviorfollow-upimprovedin vivoin vivo imaginginhibitory neuronintegration sitemotor controlneural circuitneuropsychiatric disorderneurotransmissionnoveloptogeneticsresponsesensortransmission processtwo photon microscopytwo-photonvirus genetics
项目摘要
Summary
Deficits in goal-directed behavior are the hallmark of many neuropsychiatric diseases. The dorsomedial
striatum (DMS) has emerged as a key mediator of goal-directed actions, serving as a critical node for
integration of sensorimotor, motivational, and cognitive information. Nevertheless, the cellular mechanisms
mediating these fundamental behaviors remain largely unclear. We have recently discovered that the low
threshold spiking interneuron (LTSI) subtype within the DMS is a key regulator of early goal-directed actions.
Performing the first in vivo imaging of this cell type during behavior, we uncovered robust reward-related
activity that was down-regulated as animals learned an instrumental response task. Via subsequent neural
circuit manipulations, we demonstrated that this reduction in LTSI activity could drive learning, while sustained
activity slowed learning. In this proposal, we follow up these initial studies to explore the cellular and neural
circuit mechanisms of these effects. We hypothesize that downregulation of LTSIs enhances the
responsiveness of striatal circuits, a key step in driving behavior during early learning. We suggest LTSI
downmodulation enhances striatal gain via two synergistic mechanisms: (1) increased local striatal dopamine
levels and (2) enhanced corticostriatal input to SPNs via reductions in feedforward inhibition. Preliminary work
demonstrates that LTSI inhibition can enhance striatal DA release, which may be an underlying mechanism
driving enhanced acquisition. We will test whether LTSI inhibition enhances striatal DA during learning via
calcium imaging of DA neuron terminals and virally-expressed DA sensors. To better understand the
mechanism of this modulation, we will employ acute slice electrochemical measures of optically-evoked
dopamine release during manipulation of LTSI activity. Finally, we will use circuit-targeted manipulations of DA
neurons projecting to DMS to test whether enhanced striatal DA release is a mediator of the enhanced learning
accompanying LTSI down regulation. Existing literature and preliminary data also suggest that LTSI are
engaged in feed-forward control of SPN dendrites – a key site for the integration of incoming neural signals.
First, we describe both anatomically and electrophysiologically, how LTSIs integrate within key cortico- and
thalamostriatal circuits. Next we use 2-photon microscopy to zoom into the level of SPN dendrites and synaptic
spines, to understand how LTSIs regulate calcium signaling in these important compartments. In parallel, we
explore long-term synaptic changes that accompany learning. Finally, we test whether LTSI-mediated gain
changes within specific striatal circuits accounts for altered learning. When completed, these aims will provide
our first glimpse into how striatal LTSIs gate learning, improving our understanding of the cellular mechanisms
modulating goal-directed behavior.
概括
目标指导行为的缺陷是许多神经精神疾病的标志。背部
纹状体(DMS)已成为目标指导动作的关键调解人,作为关键节点
感觉运动,动机和认知信息的整合。然而,细胞机制
介导这些基本行为仍然在很大程度上不清楚。我们最近发现低
DMS中的阈值尖峰中间神经元(LTSI)亚型是早期目标行动的关键调节器。
在行为期间,我们进行了这种细胞类型的第一个体内成像,我们发现了与奖励相关的强大奖励
当动物学习工具反应任务时,活动被下调。通过随后的中性
电路操作,我们证明了LTSI活动的减少可能会推动学习,同时持续
活动减慢了学习。在此提案中,我们跟进这些初步研究以探索细胞和中性
这些影响的电路机制。我们假设LTSI的下调增强了
纹状体电路的响应能力,这是在早期学习过程中推动行为的关键步骤。我们建议LTSI
下调通过两种协同机制增强纹状体增益:(1)局部纹状体多巴胺增加
水平和(2)通过减少进发剂抑制作用增强了对SPN的皮质纹状体输入。初步工作
证明LTSI抑制可以增强纹状体DA的释放,这可能是一种基本机制
驾驶增强的获取。我们将测试LTSI抑制是否可以通过
DA神经元末端和病毒表达的DA传感器的钙成像。更好地了解
该调制的机制,我们将采用光学诱发的急性切片电化学测量
LTSI活性操纵过程中多巴胺释放。最后,我们将使用da的电路目标操纵
投射到DM的神经元测试增强的纹状体DA释放是否是增强学习的中介者
参加LTSI降低调节。现有的文献和初步数据也表明LTSI是
参与了SPN树突的前馈控制,这是整合传入神经信号的关键部位。
首先,我们在解剖学和电生理学上都描述了LTSI如何在关键的皮质中整合到
丘脑纹状体电路。接下来,我们使用2光子显微镜将SPN树突和突触的水平缩小
刺,以了解LTSIS如何调节这些重要隔室中的钙信号传导。并行,我们
探索学习发生的长期突触变化。最后,我们测试LTSI介导的增益是否
特定的纹状体电路中的变化解释了学习的改变。完成后,这些目标将提供
我们首先了解了纹状体LTSIS门的学习方式,从而提高了我们对细胞机制的理解
调节目标指导行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc V Fuccillo其他文献
Marc V Fuccillo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc V Fuccillo', 18)}}的其他基金
Novel Role of a Ventral Striatal Circuit in Motor Control
腹侧纹状体电路在运动控制中的新作用
- 批准号:
10469310 - 财政年份:2021
- 资助金额:
$ 56.89万 - 项目类别:
Novel Role of a Ventral Striatal Circuit in Motor Control
腹侧纹状体电路在运动控制中的新作用
- 批准号:
10676802 - 财政年份:2021
- 资助金额:
$ 56.89万 - 项目类别:
A Novel Role for Local Striatal Interneuron Regulation of Goal-Directed Action
局部纹状体中间神经元调节目标导向行动的新作用
- 批准号:
10558680 - 财政年份:2020
- 资助金额:
$ 56.89万 - 项目类别:
Molecular and Circuit Mechanisms of Neurexin1-Mediated Goal-Directed Dysfunction
Neurexin1 介导的目标导向功能障碍的分子和电路机制
- 批准号:
10300008 - 财政年份:2017
- 资助金额:
$ 56.89万 - 项目类别:
Molecular and Circuit Mechanisms of Neurexin1-Mediated Goal-Directed Dysfunction
Neurexin1 介导的目标导向功能障碍的分子和电路机制
- 批准号:
10058775 - 财政年份:2017
- 资助金额:
$ 56.89万 - 项目类别:
Linking Synaptic and Cognitive Deficits in a Model of Neuropsychiatric Disease
将神经精神疾病模型中的突触和认知缺陷联系起来
- 批准号:
9069064 - 财政年份:2012
- 资助金额:
$ 56.89万 - 项目类别:
Linking Synaptic and Cognitive Deficits in a Model of Neuropsychiatric Disease
将神经精神疾病模型中的突触和认知缺陷联系起来
- 批准号:
8547839 - 财政年份:2012
- 资助金额:
$ 56.89万 - 项目类别:
Linking Synaptic and Cognitive Deficits in a Model of Neuropsychiatric Disease
将神经精神疾病模型中的突触和认知缺陷联系起来
- 批准号:
8424086 - 财政年份:2012
- 资助金额:
$ 56.89万 - 项目类别:
Synaptic Analysis of Neuroligin1 function
Neuroligin1 功能的突触分析
- 批准号:
7676907 - 财政年份:2009
- 资助金额:
$ 56.89万 - 项目类别:
Synaptic Analysis of Neuroligin1 function
Neuroligin1 功能的突触分析
- 批准号:
7895499 - 财政年份:2009
- 资助金额:
$ 56.89万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:82201271
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:32201547
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
In Vivo Function and Metabolism Evaluation of Glaucomatous RGCs by Two-Photon Scanning Laser Ophthalmology
双光子扫描激光眼科评价青光眼 RGC 的体内功能和代谢
- 批准号:
10660761 - 财政年份:2023
- 资助金额:
$ 56.89万 - 项目类别:
The Pain in a Dish Assay (PIDA): a high throughput system featuring human stem cell-derived nociceptors and dorsal horn neurons to test compounds for analgesic activity
皿中疼痛测定 (PIDA):一种高通量系统,具有人类干细胞来源的伤害感受器和背角神经元,用于测试化合物的镇痛活性
- 批准号:
10759735 - 财政年份:2023
- 资助金额:
$ 56.89万 - 项目类别:
Contribution of Vitamin D Deficiency to Pathological Progression in Models of Cerebral Hypoperfusion
维生素 D 缺乏对脑低灌注模型病理进展的影响
- 批准号:
10725358 - 财政年份:2023
- 资助金额:
$ 56.89万 - 项目类别:
Investigating the origin and functional properties of immune cells in noise-induced hearing loss
研究噪声性听力损失中免疫细胞的起源和功能特性
- 批准号:
10731667 - 财政年份:2023
- 资助金额:
$ 56.89万 - 项目类别: