Data Management and Analysis Core
数据管理与分析核心
基本信息
- 批准号:10337256
- 负责人:
- 金额:$ 24.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-04-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAnalytical ChemistryArchitectureArizonaArsenicBar CodesBiologicalChIP-seqChemicalsCodeCollaborationsCommunicationCommunitiesComplexComplex AnalysisComputer AnalysisComputer softwareCustomDataData AnalysesData SetData Storage and RetrievalDiabetes MellitusDisciplineDiseaseEducational workshopEnvironmentEnvironmental ScienceFundingFutureGene ExpressionGenerationsGenomicsGoalsHealthHousingHuman ResourcesImageIndividualIndustryInfrastructureIntuitionInvestigationLaboratoriesLeadLibrariesMass Spectrum AnalysisMetagenomicsNUP214 genePlant RootsPlantsPositioning AttributeProcessProgram Research Project GrantsProteomicsPublishingResearchResearch ActivityResearch PersonnelResearch Project GrantsRiskRoleRunningSamplingScienceServicesSoilStandardizationStratificationSuperfundSystemTechnologyTestingToxic effectTrainingTranslational ResearchTranslationsUnited States National Institutes of HealthUniversitiesVisualizationWeatherWorkbasecase-by-case basiscommunity engagementcomputer infrastructurecomputerized toolsdata accessdata formatdata managementdata repositorydata sharingdata toolsdata visualizationdesignempoweredexome sequencingexperienceexperimental groupexperimental studyfile formatgenetic signaturegeological sciencegraphical user interfaceinnovationinsightinterestlarge datasetsmembermetabolomicsmetagenomemicrobiomemobile computingnovelprediction algorithmprogramspublic repositoryskillssymposiumtooltranscriptome sequencinguser-friendlywastingweb app
项目摘要
PROJECT SUMMARY (Data Management and Analysis Core: Aikseng Ooi and Nirav Merchant)
The University of Arizona Superfund Research Program (UA SRP) will generate volumes and types of data that
are not manageable in traditional laboratory settings. The Data Management and Analysis Core (DMAC) will
function as the primary service for UA SRP into large biological, geophysical, and chemical datasets, including
but not limited to RNA sequencing, chromatin immunoprecipitation sequencing, exome sequencing,
metabolomics, metagenomics, microbiome amplicon sequencing, geospatial positioning, analytical chemistry,
and imaging. DMAC enables investigators by performing three core functions: (1) DMAC will lead the housing
of all data in an easy-to-access data repository system: CyVerse. Cyverse is a computational infrastructure
consisting of hardware, software, and personnel that are designed to handle huge datasets and complex
analyses, and is maintained at the University of Arizona. DMAC will utilize a reference implementation (RI) that
divides data into five different levels for easy data sharing, processing, and analyzing. Lowest levels (level 1)
will be raw data, while higher levels (level 5) will be file formats utilizable in graphics visualizations. DMAC will
support these processes with help from on-staff statisticians and bioinformaticians who can devise analysis
strategies for individual investigators. In addition to data storage, DMAC will orchestrate sample management
using Fulcrum software. Fulcrum allows barcoding, global positioning, and annotation of biological samples in
an easy-to-use application available on both traditional workstations and mobile platforms. Fulcrum is critical for
point-of-generation sample tracking due to its mobility. (2) Beyond data and sample management, DMAC will
perform both standard and custom computational analyses of the data. This will include DMAC-lead
investigations into “feature signatures”, which address the predictability of data across UA SRP projects; for
example, can the gene expression changes associated with a particular arsenic treatment predict metagenomics
changes in a similarly treated sample? In conjunction with UA SRP investigators, DMAC will apply traditional
algorithms, or develop novel algorithms as needed, to identify signatures for the different data types collected.
(3) The storage and analytical capabilities of DMAC will be integrated into a user-friendly web application that
allows individual investigators to retrieve, manipulate, and visualize UA SRP data. The web application will be
implemented using an in-house maintained server in conjunction with the R statistical environment. DMAC is
thus an integral component of the UA SRP proposal that utilizes state-of-the-art technologies to enable the
discovery of novel insights into arsenic exposure and its role in health and disease.
项目总结(数据管理和分析核心:Aikseng Ooi和Nirav Merchant)
亚利桑那大学超级基金研究计划(UA SRP)将产生大量和类型的数据,
在传统的实验室环境中是无法管理的。数据管理和分析核心(DMAC)将
作为UA SRP到大型生物、地球物理和化学数据集的主要服务,包括
但不限于RNA测序、染色质免疫沉淀测序、外显子组测序、
代谢组学、元基因组学、微生物组扩增子测序、地理空间定位、分析化学
和成像。DMAC通过执行三个核心职能来支持调查人员:(1)DMAC将领导住房
在一个易于访问的数据存储库系统中的所有数据中:CyVerse。CyVerse是一个计算基础设施
由硬件、软件和人员组成,旨在处理庞大的数据集和复杂的
分析,并在亚利桑那大学维护。DMAC将利用参考实现(RI),该实现
将数据划分为五个不同的级别,以便于数据共享、处理和分析。最低级别(1级)
将是原始数据,而更高级别(5级)将是可在图形可视化中使用的文件格式。DMAC将
在能够设计分析的在职统计员和生物信息学家的帮助下,支持这些过程
针对个别调查人员的策略。除了数据存储,DMAC还将协调样本管理
使用Fulcrum软件。FULCRUM允许对生物样本进行条形码、全球定位和注释
一款易于使用的应用程序,可在传统工作站和移动平台上使用。FULCRUM对于
由于其移动性,因此可进行代点样本跟踪。(2)除了数据和样本管理,DMAC还将
对数据执行标准和自定义计算分析。这将包括DMAC-Lead
对“特征签名”的调查,这些特征签名涉及UA SRP项目中数据的可预测性;
例如,与特定砷治疗相关的基因表达变化能否预测元基因组学
在类似处理的样本中发生了变化?与UA SRP调查人员合作,DMAC将应用传统
算法,或根据需要开发新的算法,以识别所收集的不同数据类型的签名。
(3)DMAC的存储和分析能力将被集成到一个用户友好的网络应用程序中,该应用程序
允许个人调查人员检索、操作和可视化UA SRP数据。Web应用程序将是
使用内部维护的服务器与R统计环境一起实施。DMAC是
因此,UA SRP提案的一个组成部分,利用最先进的技术使
对砷暴露及其在健康和疾病中的作用的新见解的发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aikseng Ooi其他文献
Aikseng Ooi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aikseng Ooi', 18)}}的其他基金
Selective Killing of FH-/- Cancer Cells by Targeting Cellular Iron Homeostasis
通过靶向细胞铁稳态选择性杀死 FH-/- 癌细胞
- 批准号:
10521277 - 财政年份:2018
- 资助金额:
$ 24.45万 - 项目类别:
Selective Killing of FH-/- Cancer Cells by Targeting Cellular Iron Homeostasis
通过靶向细胞铁稳态选择性杀死 FH-/- 癌细胞
- 批准号:
10056199 - 财政年份:2018
- 资助金额:
$ 24.45万 - 项目类别:
Selective Killing of FH-/- Cancer Cells by Targeting Cellular Iron Homeostasis
通过靶向细胞铁稳态选择性杀死 FH-/- 癌细胞
- 批准号:
10310485 - 财政年份:2018
- 资助金额:
$ 24.45万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 24.45万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 24.45万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 24.45万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 24.45万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 24.45万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 24.45万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 24.45万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 24.45万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 24.45万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 24.45万 - 项目类别:
Continuing Grant














{{item.name}}会员




