Processive Antitermination of Antibiotic Synthesis Genes
抗生素合成基因的持续抗终止
基本信息
- 批准号:10346009
- 负责人:
- 金额:$ 33.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAffinityAnabolismAntibioticsBacillusBacteriaBase SequenceBindingBiochemicalBioinformaticsBypassC-terminalComplexDNA-Directed RNA PolymeraseDataDevelopmentFamilyGene ExpressionGenesGeneticGenetic TranscriptionIn VitroInvestigationKnowledgeLifeMapsMolecularMolecular GeneticsMutationN-terminalNamesOperonOrganismPathway interactionsPeptide Initiation FactorsPlayPolysaccharidesProductionProteinsRNARNA BindingRegulationRegulonResolutionRibonucleoproteinsRoleSignal TransductionSiteStructureSubgroupTranscription ElongationTranscription InitiationTranscriptional Elongation Factorsantiterminationcollaborative approachexperimental studygene synthesisgenetic regulatory proteinimprovedin vivoinsightintermolecular interactionnovelparalogous geneprotein protein interactionreconstitutionrecruitrhotooltranscription factorvirtual
项目摘要
Abstract
NusG is a transcription elongation protein used by virtually all organisms from the three domains of life. Bacterial
NusG associates with RNA polymerase (RNAP) through its N-terminal domain, whilst, despite its small size, the
C-terminal domain (CTD) forms dynamical interactions with other transcription factors (Rho, S10, NusB and
NusA) to affect transcription elongation. While all bacteria encode for a core NusG, many also synthesize
paralogs that transiently bind RNAP to alter expression of targeted genes. Yet, despite the importance of the
genes they regulate, most of the known subfamilies of NusG paralogs have not been investigated in depth (e.g.,
UpxY, TaA, and ActX). We recently discovered a new and widespread subfamily of NusG-like proteins, which
we called LoaP. Our preliminary investigation of this unique protein showed that Bacillus velezensis LoaP
activates expression of a regulon that is comprised of two different antibiotic synthesis operons. Upon further
inspection, we found evidence that suggests a broad regulatory relationship between LoaP and antibiotic
synthesis operons. This discovery is particularly important because our data suggests that the LoaP regulatory
protein reconfigures the transcription elongation machinery into an antitermination complex, capable of
bypassing multiple termination sites spread throughout the antibiotic synthesis operons. The presence of these
termination sites suggests that these operons have become ‘addicted’ to the LoaP antitermination factor, as their
transcription would be impossible without the dedicated antitermination complex. We speculate that this
observation explains why some antibiotic synthesis operons do not express well within the confines of a
heterologous host; they may have simply accrued termination sites that strikingly inhibit transcription elongation
in the absence of their cognate antitermination factor. Together, these data demonstrate how there is an urgent
need to better understand the genetic regulatory mechanisms affecting antibiotic synthesis operons, as this
information will influence the strategies used for discovering novel antibiotics and will lead to new tools for
improving heterologous production of antibiotics. Therefore, it is of significant importance to understand how the
LoaP antitermination mechanism exerts its regulatory influence over these important specialized metabolite
operons. Moreover, our preliminary data have demonstrated that LoaP uses a regulatory mechanism that is
different than those utilized by the other known NusG paralogs. In this project we will discover the molecular
mechanism used by LoaP to specifically manipulate transcription elongation of antibiotic synthesis operons. This
will significantly expand knowledge of the regulatory mechanisms that control antibiotic synthesis while also
revealing new and fundamental insight into the workings of the transcription elongation complex.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wade Winkler其他文献
Wade Winkler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wade Winkler', 18)}}的其他基金
Processive Antitermination of Antibiotic Synthesis Genes
抗生素合成基因的持续抗终止
- 批准号:
10581588 - 财政年份:2022
- 资助金额:
$ 33.59万 - 项目类别:
Regulation of Magnesium Homeostasis in Bacillus subtilis
枯草芽孢杆菌中镁稳态的调节
- 批准号:
7302646 - 财政年份:2007
- 资助金额:
$ 33.59万 - 项目类别:
Regulation of Magnesium Homeostasis in Bacillus subtilis
枯草芽孢杆菌中镁稳态的调节
- 批准号:
7489391 - 财政年份:2007
- 资助金额:
$ 33.59万 - 项目类别:
Regulation of Magnesium Homeostasis in Bacillus subtilis
枯草芽孢杆菌中镁稳态的调节
- 批准号:
8413242 - 财政年份:2007
- 资助金额:
$ 33.59万 - 项目类别:
Regulation of Magnesium Homeostasis in Bacillus subtilis
枯草芽孢杆菌中镁稳态的调节
- 批准号:
7665041 - 财政年份:2007
- 资助金额:
$ 33.59万 - 项目类别:
Regulation of Magnesium Homeostasis in Bacillus subtilis
枯草芽孢杆菌中镁稳态的调节
- 批准号:
7906074 - 财政年份:2007
- 资助金额:
$ 33.59万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 33.59万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 33.59万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 33.59万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 33.59万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 33.59万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 33.59万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 33.59万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 33.59万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 33.59万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 33.59万 - 项目类别:
Continuing Grant














{{item.name}}会员




