Human Astrocyte-Based Nanovesicles to Target Neuroinflammation in Alzheimer's Disease
基于人星形胶质细胞的纳米囊泡可针对阿尔茨海默病的神经炎症
基本信息
- 批准号:10348978
- 负责人:
- 金额:$ 44.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdhesionsAdrenal Cortex HormonesAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease modelAmyloid beta-ProteinAnti-Inflammatory AgentsAntibodiesAreaAstrocytesBackBindingBiological AssayBiomedical EngineeringBiomimeticsCalciumCell Adhesion MoleculesCell SeparationCell physiologyCellsChargeClinicalCoculture TechniquesDataDevelopmentDexamethasoneDrug TargetingEarly identificationEndotheliumFlow CytometryFluorescenceFormulationFoundationsFutureGene Expression ProfilingGenerationsGeneticGoalsHomeostasisHumanImageImage CytometryImaging DeviceImpaired cognitionInflammationInflammatoryInterventionKnowledgeLaboratoriesLeadLeukocytesLipidsMeasuresMediatingMembraneMembrane ProteinsMicrogliaMicroscopyNanotechnologyNerve DegenerationNervous system structureNeurogliaNeuronal DysfunctionNeuronsNeurophysiology - biologic functionNeurosciencesOutcomePathway interactionsPharmaceutical PreparationsPropertyProteinsProteomicsProtocols documentationResearchSignal TransductionSignaling MoleculeSourceSurfaceSystemTechnologyTestingTherapeuticTherapeutic AgentsTimeTranslatingabeta oligomeragedbasecell communitycell typeeffective therapyexosomehuman pluripotent stem cellimprovedinhibitorinnovationinnovative technologiesinsightmonolayernanovesicleneural networkneuroinflammationneuropathologynext generationnoveloptical imagingrelating to nervous systemspecific biomarkersstability testingtargeted deliverytargeted imagingtargeted treatmenttheranosticstooluptake
项目摘要
PROJECT SUMMARY-ABSTRACT
Astrocytes are specialized glial cells that are highly abundant in the nervous system and that maintain
functional homeostasis of neural networks. In the aged and the Alzheimer’s disease brain, astrocytes can
contribute inflammatory signaling molecules to the surrounding micro-environment, in turn, negatively impacting
neural function. How can therapeutics, such as anti-inflammatories, be selectively delivered to these
dysfunctional astrocytes in order to reduce off-target drug effects on other cells? At present, no effective clinical
approaches exist for this purpose. Here, we aim to overcome this lack of technology by formulating lipid
nanovesicles capable of enhanced targeted delivery. Development of this innovative technology will be enabled
through the combined expertise of two synergistic laboratories who will bioengineer membrane proteins from
human pluripotent stem cell-derived astrocytes into the surface of lipid-based nanovesicles. Our preliminary
studies have revealed that nanovesicles integrated with membrane proteins derived from unique cell sources
retain unique cell adhesion proteins that may lead to cell-specific targeting. This finding provoked our hypothesis
that nanovesicles coated with adhesion molecules derived from Alzheimer’s disease-model astrocytes (a.k.a.,
AstroVesicles (AVs)) will bind to protein-interacting partners, specifically at the surface of inflammatory
astrocytes and, thus, increase cellular uptake by dysfunctional astrocytes. In this way, AVs could be a potential
new theranostic tool that allows for the early identification of inflamed areas as well as the delivery of therapeutic
cargo. Astrocyte inflammation will be induced by amyloid beta oligomer treatment to model the Alzheimer’s
disease microenvironment and then reactivity will be confirmed by functional calcium imaging and gene
expression profiling. To test the hypothesis, in Aim 1, we will formulate nanovesicles and compare the size,
charge, and stability of those containing membrane proteins from naïve and oligomer-treated inflammatory
astrocytes as well as from other sources (e.g., neurons, microglia, and cell-derived exosomes). We will perform
proteomics-based discovery of the nanovesicles to identify cell-specific proteins with high potential for cell
targeting based on known cell-cell protein interactions. In Aim 2, we will validate the expected capability of AVs
to preferentially target astrocytes that are inflamed via amyloid beta oligomer treatment, in comparison to naïve
astrocytes and microglia. We will also test potential mechanisms of targeting by interfering with candidate
proteins identified in preliminary data. Our approach will be to measure the presence of AVs upon treatment of
sphere cultures composed of astrocytes, neurons, and microglia, using three-dimensional optical imaging and
flow cytometry. Notably, these studies will pioneer the use of human neural spheres for nanovesicle testing.
Finally, in Aim 3, we will test whether AVs yield enhanced functional delivery of anti-inflammatories, focusing on
the NFB pathway. After optimizing and validating the AVs, we expect this innovative system will be utilized
throughout the neuroscience community for cell-targeted therapeutics and imaging tools in Alzheimer’s disease.
项目摘要
星形胶质细胞是神经系统中高度丰富的特化胶质细胞,
神经网络的功能稳态。在老年人和阿尔茨海默病患者的大脑中,星形胶质细胞可以
促进炎症信号分子周围的微环境,反过来,
神经功能如何选择性地将治疗药物,如抗炎药,
功能失调的星形胶质细胞,以减少脱靶药物对其他细胞的影响?目前尚无有效的临床
存在用于此目的的方法。在这里,我们的目标是克服这种缺乏技术,
能够增强靶向递送的纳米囊泡。这项创新技术的发展将使
通过两个协同实验室的综合专业知识,他们将生物工程膜蛋白,
将人多能干细胞衍生的星形胶质细胞植入基于脂质的纳米囊泡的表面。我们的初步
研究表明,与来自独特细胞来源的膜蛋白整合的纳米囊泡
保留独特的细胞粘附蛋白,可能导致细胞特异性靶向。这一发现激发了我们的假设
用源自阿尔茨海默病模型星形胶质细胞(a.k.a.,
AstroVesicles(AV))将与蛋白质相互作用的伴侣结合,特别是在炎症表面。
星形胶质细胞,并因此增加功能失调的星形胶质细胞的细胞摄取。这样一来,自动驾驶汽车可能成为一种潜在的
一种新的治疗诊断工具,可以早期识别发炎区域并提供治疗药物,
货物.星形胶质细胞炎症将通过淀粉样蛋白β寡聚体治疗诱导以模拟阿尔茨海默氏症
疾病微环境,然后反应性将通过功能性钙成像和基因
表达谱分析为了检验这一假设,在目标1中,我们将配制纳米囊泡并比较其大小,
电荷和稳定性的那些含有膜蛋白从幼稚和寡聚体治疗的炎症
星形胶质细胞以及其它来源(例如,神经元、小胶质细胞和细胞衍生的外泌体)。我们将执行
基于蛋白质组学的纳米囊泡发现,以确定具有高细胞增殖潜力的细胞特异性蛋白质。
基于已知的细胞-细胞蛋白质相互作用的靶向。在目标2中,我们将验证无人驾驶汽车的预期能力
与未经治疗的星形胶质细胞相比,
星形胶质细胞和小胶质细胞。我们还将通过干扰候选人来测试潜在的靶向机制。
在初步数据中发现的蛋白质。我们的方法将是测量AV治疗后的存在,
使用三维光学成像技术,
流式细胞仪值得注意的是,这些研究将开创使用人类神经球进行纳米囊泡测试的先河。
最后,在目标3中,我们将测试AV是否产生增强的抗炎药功能性递送,重点是
NF κ B B通路。经过优化和验证的自动驾驶汽车,我们希望这个创新的系统将被利用
在整个神经科学界的细胞靶向治疗和成像工具在阿尔茨海默病。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asteroid impact: the potential of astrocytes to modulate human neural networks within organoids.
- DOI:10.3389/fnins.2023.1305921
- 发表时间:2023
- 期刊:
- 影响因子:4.3
- 作者:Lavekar, S. S.;Patel, M. D.;Montalvo-Parra, M. D.;Krencik, R.
- 通讯作者:Krencik, R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Conrad Krencik其他文献
Robert Conrad Krencik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Conrad Krencik', 18)}}的其他基金
Relationship of the Human Astrocyte Matrisome with Synaptic Networks
人星形胶质细胞基质体与突触网络的关系
- 批准号:
10709023 - 财政年份:2022
- 资助金额:
$ 44.41万 - 项目类别:
Relationship of the Human Astrocyte Matrisome with Synaptic Networks
人星形胶质细胞基质体与突触网络的关系
- 批准号:
10562919 - 财政年份:2022
- 资助金额:
$ 44.41万 - 项目类别:
MicroBRAINS: Bioengineered Human Neural Circuits for Aging Research
MicroBRAINS:用于衰老研究的生物工程人类神经回路
- 批准号:
9807158 - 财政年份:2019
- 资助金额:
$ 44.41万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 44.41万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 44.41万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 44.41万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 44.41万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 44.41万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 44.41万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 44.41万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 44.41万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 44.41万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 44.41万 - 项目类别: