Human Astrocyte-Based Nanovesicles to Target Neuroinflammation in Alzheimer's Disease

基于人星形胶质细胞的纳米囊泡可针对阿尔茨海默病的神经炎症

基本信息

项目摘要

PROJECT SUMMARY-ABSTRACT Astrocytes are specialized glial cells that are highly abundant in the nervous system and that maintain functional homeostasis of neural networks. In the aged and the Alzheimer’s disease brain, astrocytes can contribute inflammatory signaling molecules to the surrounding micro-environment, in turn, negatively impacting neural function. How can therapeutics, such as anti-inflammatories, be selectively delivered to these dysfunctional astrocytes in order to reduce off-target drug effects on other cells? At present, no effective clinical approaches exist for this purpose. Here, we aim to overcome this lack of technology by formulating lipid nanovesicles capable of enhanced targeted delivery. Development of this innovative technology will be enabled through the combined expertise of two synergistic laboratories who will bioengineer membrane proteins from human pluripotent stem cell-derived astrocytes into the surface of lipid-based nanovesicles. Our preliminary studies have revealed that nanovesicles integrated with membrane proteins derived from unique cell sources retain unique cell adhesion proteins that may lead to cell-specific targeting. This finding provoked our hypothesis that nanovesicles coated with adhesion molecules derived from Alzheimer’s disease-model astrocytes (a.k.a., AstroVesicles (AVs)) will bind to protein-interacting partners, specifically at the surface of inflammatory astrocytes and, thus, increase cellular uptake by dysfunctional astrocytes. In this way, AVs could be a potential new theranostic tool that allows for the early identification of inflamed areas as well as the delivery of therapeutic cargo. Astrocyte inflammation will be induced by amyloid beta oligomer treatment to model the Alzheimer’s disease microenvironment and then reactivity will be confirmed by functional calcium imaging and gene expression profiling. To test the hypothesis, in Aim 1, we will formulate nanovesicles and compare the size, charge, and stability of those containing membrane proteins from naïve and oligomer-treated inflammatory astrocytes as well as from other sources (e.g., neurons, microglia, and cell-derived exosomes). We will perform proteomics-based discovery of the nanovesicles to identify cell-specific proteins with high potential for cell targeting based on known cell-cell protein interactions. In Aim 2, we will validate the expected capability of AVs to preferentially target astrocytes that are inflamed via amyloid beta oligomer treatment, in comparison to naïve astrocytes and microglia. We will also test potential mechanisms of targeting by interfering with candidate proteins identified in preliminary data. Our approach will be to measure the presence of AVs upon treatment of sphere cultures composed of astrocytes, neurons, and microglia, using three-dimensional optical imaging and flow cytometry. Notably, these studies will pioneer the use of human neural spheres for nanovesicle testing. Finally, in Aim 3, we will test whether AVs yield enhanced functional delivery of anti-inflammatories, focusing on the NFB pathway. After optimizing and validating the AVs, we expect this innovative system will be utilized throughout the neuroscience community for cell-targeted therapeutics and imaging tools in Alzheimer’s disease.
项目摘要提取 星形胶质细胞是专门的神经胶质细胞,在神经系统中高度丰富并且维持 神经网络的功能稳态。在老年人和阿尔茨海默氏病大脑中,星形胶质细胞可以 反过来促进周围微环境的炎症信号分子。 神经功能。如何选择治疗,例如抗炎药 功能失调的星形胶质细胞以减少对其他细胞的脱靶药物影响?目前,没有有效的临床 为此目的存在方法。在这里,我们的目标是通过制定脂质来克服这种缺乏技术 能够增强目标递送的纳米媒体。将启用这种创新技术的开发 通过两个协同实验室的联合专业知识,这些实验室将来自 人多能干细胞衍生的星形胶质细胞进入基于脂质的纳米层的表面。我们的初步 研究表明,与源自独特细胞源的膜蛋白整合的纳米植物 保留可能导致细胞特异性靶向的独特细胞粘附蛋白。这一发现激发了我们的假设 那是涂有阿尔茨海默氏病模型星形胶质细胞的粘合分子(又称,也是 果蝇(AVS))将与蛋白质相互作用的伴侣结合,特别是在炎症表面 星形胶质细胞,因此增加了功能失调的星形胶质细胞的细胞摄取。这样,AV可能是一种潜力 新的Theranotic工具,允许早期鉴定发炎的区域以及提供治疗 货物。星形胶质细胞炎症将由淀粉样蛋白β低聚物治疗引起,以建模阿尔茨海默氏症 疾病微环境,然后通过功能性钙成像和基因证实反应性 表达分析。为了检验假设,在AIM 1中,我们将制定纳米层并比较大小, 来自幼稚和低聚物治疗的炎症的膜蛋白的电荷和稳定性 星形胶质细胞以及其他来源(例如神经元,小胶质细胞和细胞衍生的外泌体)。我们将表演 基于蛋白质组学的发现纳米孢子以鉴定细胞特异性蛋白具有很高的细胞潜力 基于已知的细胞蛋白相互作用的靶向。在AIM 2中,我们将验证AV的预期能力 优先针对通过淀粉样蛋白β低聚物治疗发炎的星形胶质细胞,与幼稚相比 星形胶质细胞和小胶质细胞。我们还将通过干扰候选人来测试靶向的潜在机制 初步数据中鉴定出的蛋白质。我们的方法是在处理时测量AV的存在 由星形胶质细胞,神经元和小胶质细胞组成的球体培养物,使用三维光学成像和 流式细胞仪。值得注意的是,这些研究将开拓人类神经球的使用进行纳米层测试。 最后,在AIM 3中,我们将测试AVS是否产生抗炎药的功能传递,重点关注 NFB路径。在优化和验证AV之后,我们希望将使用这种创新系统 通过神经科学界的细胞靶向疗法和阿尔茨海默氏病的成像工具。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asteroid impact: the potential of astrocytes to modulate human neural networks within organoids.
  • DOI:
    10.3389/fnins.2023.1305921
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Lavekar, S. S.;Patel, M. D.;Montalvo-Parra, M. D.;Krencik, R.
  • 通讯作者:
    Krencik, R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Conrad Krencik其他文献

Robert Conrad Krencik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Conrad Krencik', 18)}}的其他基金

Relationship of the Human Astrocyte Matrisome with Synaptic Networks
人星形胶质细胞基质体与突触网络的关系
  • 批准号:
    10709023
  • 财政年份:
    2022
  • 资助金额:
    $ 44.41万
  • 项目类别:
Relationship of the Human Astrocyte Matrisome with Synaptic Networks
人星形胶质细胞基质体与突触网络的关系
  • 批准号:
    10562919
  • 财政年份:
    2022
  • 资助金额:
    $ 44.41万
  • 项目类别:
MicroBRAINS: Bioengineered Human Neural Circuits for Aging Research
MicroBRAINS:用于衰老研究的生物工程人类神经回路
  • 批准号:
    9807158
  • 财政年份:
    2019
  • 资助金额:
    $ 44.41万
  • 项目类别:

相似国自然基金

促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
  • 批准号:
    32301204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
载Pexidartinib的纳米纤维膜通过阻断CSF-1/CSF-1R通路抑制巨噬细胞活性预防心脏术后粘连的研究
  • 批准号:
    82370515
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
泛素连接酶SMURF2通过SMAD6-COL5A2轴调控宫腔粘连纤维化的分子机制研究
  • 批准号:
    82360301
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
  • 批准号:
    82302691
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
膜仿生载基因纳米球体内重编程巨噬细胞抑制肌腱粘连的机制研究
  • 批准号:
    82372389
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Novel treatments for Autoimmune Disease
自身免疫性疾病的新疗法
  • 批准号:
    10758915
  • 财政年份:
    2023
  • 资助金额:
    $ 44.41万
  • 项目类别:
Advancement of a lead small molecule gp130 modulator for improving outcomes in joint fibrosis
领先的小分子 gp130 调节剂的进展,用于改善关节纤维化的结果
  • 批准号:
    10482204
  • 财政年份:
    2022
  • 资助金额:
    $ 44.41万
  • 项目类别:
Sustained Release Relaxin-2 for the Treatment of Frozen Shoulder
缓释松弛素2治疗肩周炎
  • 批准号:
    10443323
  • 财政年份:
    2022
  • 资助金额:
    $ 44.41万
  • 项目类别:
Mitigation of Exaggerated Smooth Muscle Force with Inhibitors of Integrin Alpha2Beta1
使用整合素 Alpha2Beta1 抑制剂缓解过度的平滑肌力
  • 批准号:
    10448088
  • 财政年份:
    2022
  • 资助金额:
    $ 44.41万
  • 项目类别:
Sustained Release Relaxin-2 for the Treatment of Frozen Shoulder
缓释松弛素2治疗肩周炎
  • 批准号:
    10669219
  • 财政年份:
    2022
  • 资助金额:
    $ 44.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了