Determining the role of distinct parafascicular thalamic circuits in motor behaviors relevant to Parkinson’s disease
确定不同的束旁丘脑回路在帕金森病相关运动行为中的作用
基本信息
- 批准号:10348316
- 负责人:
- 金额:$ 10.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-15 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationBasal GangliaBasic ScienceBehaviorBehavioralBiological AssayBrain regionCalciumComplementComplexCorpus striatum structureDataDeep Brain StimulationDefectDevelopment PlansDiseaseDisease modelDorsalElectrophysiology (science)ExhibitsFunctional disorderFutureGilles de la Tourette syndromeGlobus PallidusHeterogeneityHumanHuntington DiseaseImageInstitutesLifeLocomotionMediatingMentorsMolecular TargetMotorMotor CortexMotor SkillsMovementMovement DisordersMusMuscarinic Acetylcholine ReceptorNeurodegenerative DisordersNeuronsParkinson DiseasePathway interactionsPatternPhasePhenotypePlayProcessRattusReceptor ActivationReportingResearchResearch PersonnelReversal LearningRoleStructure of subthalamic nucleusSubstantia nigra structureSystemTestingThalamic NucleiThalamic structureTherapeuticWild Type Mousebasecareer developmentdisabling symptomexperimental studyin vivoin vivo calcium imaginginnovationlearned behaviormotor behaviormotor deficitmotor disordermotor impairmentmotor learningmotor symptommouse modelneural circuitoptogeneticsprogramsputamenrelating to nervous systemresearch and developmentresponsesingle-cell RNA sequencingtool
项目摘要
Project Summary
The ability to move from one place to another and acquire different motor skills is critical for our survival. Many
human disorders including Parkinson's disease, Huntington's disease, and Tourette syndrome, cause
abnormal motor behaviors. Identifying neural circuits that mediate locomotion and motor learning are therefore
crucial both in terms of basic science and understanding how their dysfunction in disease models may
contribute to motor defects. Parafascicular (PF) thalamus has extensive connectivity within the basal ganglia
motor system, and is involved in reversal learning as well as the initiation of movement sequences. Although
heterogeneity within PF thalamic neurons has been reported at the cellular level, the functional relevance of
distinct PF subpopulations in motor behaviors remains unknown. The central hypothesis of this proposal is that
PF thalamus contains distinct projection-specific subpopulations that mediate different motor processes.
During the K99 phase, using chemogenetic neuronal inhibition and in vivo calcium imaging, I will test the
hypothesis that the thalamostriatal (PF!dorsal striatum) pathway is mainly involved in locomotion whereas the
thalamosubthalamic (PF!subthalamic nucleus) pathway is mainly involved in motor learning. By comparing
inputs from motor cortex, globus pallidus, and substantia nigra to these PF subpopulations followed by
optogenetic circuit manipulations, I will identify PF subpopulation-specific inputs that are critical for their
behavioral contributions. During the R00 phase, using ex vivo electrophysiology, I will determine how these two
PF circuits are altered in a mouse model of Parkinson's disease, which will set the stage for the identification of
circuit-based manipulations that may rescue both locomotion and motor learning in this mouse model. To
further these rescue experiments, I will perform single cell RNA sequencing of the two PF subpopulations in
wild type mice to identify potential molecular targets capable of rescuing both motor phenotypes in Parkinson's
disease mice. Together, the proposed project will not only enhance our understanding regarding the role of
distinct PF circuits in motor functions, but also potentially indicate that targeting PF circuits may be sufficient to
rescue multiple motor phenotypes in neurodegenerative disease models. The proposed research and career
development plan will be conducted in the lab of Dr. Guoping Feng at the Broad Institute of MIT and Harvard,
which will prepare Dr. Dheeraj Roy to direct an innovative research program as an independent investigator
studying neural circuit mechanisms mediating normal and disease states.
项目摘要
从一个地方移动到另一个地方并获得不同运动技能的能力对我们的生存至关重要。许多
人类疾病包括帕金森氏病、亨廷顿氏病和图雷特综合征,
异常的运动行为因此,识别调节运动和运动学习的神经回路是
无论是在基础科学方面,还是在理解他们在疾病模型中的功能障碍方面,
导致运动缺陷。束旁丘脑(PF)在基底神经节内具有广泛的连通性
运动系统,并参与反向学习以及运动序列的启动。虽然
PF丘脑神经元内的异质性已经在细胞水平上被报道,
运动行为中不同的PF亚群仍然未知。这一提议的核心假设是,
PF丘脑包含不同的投射特定的亚群,介导不同的运动过程。
在K99阶段,使用化学发生神经元抑制和体内钙成像,我将测试
假设丘脑纹状体(PF!背侧纹状体)通路主要参与运动,而
丘脑底丘脑(PF!丘脑底核)通路主要参与运动学习。通过比较
从运动皮层、苍白球和黑质输入到这些PF亚群,
光遗传学电路操作,我将确定PF亚群特异性输入,这是关键的,
行为贡献。在R 00阶段,使用离体电生理学,我将确定这两个
在帕金森病小鼠模型中,PF回路发生了改变,这将为识别
基于电路的操作,可以拯救运动和运动学习在这个小鼠模型。到
为了进一步进行这些拯救实验,我将对两个PF亚群进行单细胞RNA测序,
野生型小鼠,以确定潜在的分子靶点,能够挽救帕金森氏症的两种运动表型
病鼠总的来说,拟议的项目不仅将加强我们对
不同的PF回路在运动功能,但也可能表明,目标PF回路可能足以
在神经退行性疾病模型中拯救多种运动表型。建议的研究和职业
开发计划将在麻省理工学院和哈佛布罗德研究所冯国平博士的实验室进行,
这将为Dheeraj Roy博士作为独立调查员指导创新研究项目做好准备
研究调节正常和疾病状态的神经回路机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dheeraj Roy其他文献
Dheeraj Roy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dheeraj Roy', 18)}}的其他基金
Determining the Role of Distinct Parafascicular Thalamic Circuits in Motor Behaviors Relevant to Parkinson’s Disease
确定独特的束旁丘脑回路在帕金森病相关运动行为中的作用
- 批准号:
10536684 - 财政年份:2021
- 资助金额:
$ 10.83万 - 项目类别:
相似海外基金
Mechanisms of Motivation: The Role of Cortical-Basal Ganglia-Dopamine Circuits in Reward Pursuit and Apathy
动机机制:皮质-基底神经节-多巴胺回路在奖励追求和冷漠中的作用
- 批准号:
MR/X022080/1 - 财政年份:2024
- 资助金额:
$ 10.83万 - 项目类别:
Research Grant
Elucidation of the onset mechanism of dysphagia in basal ganglia disease and development of new treatment methods
阐明基底神经节疾病吞咽困难的发病机制并开发新的治疗方法
- 批准号:
23K09284 - 财政年份:2023
- 资助金额:
$ 10.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Opponent control of action selection in the cortico-basal-ganglia-colliculus loop
皮质-基底节-丘环中动作选择的对手控制
- 批准号:
10633574 - 财政年份:2023
- 资助金额:
$ 10.83万 - 项目类别:
Characterizing GABAergic transmission at the cellular and synaptic levels in the developing and mature basal ganglia of the Huntington's Disease brain
描述亨廷顿病大脑发育和成熟基底神经节细胞和突触水平上的 GABA 能传递
- 批准号:
478477 - 财政年份:2023
- 资助金额:
$ 10.83万 - 项目类别:
Operating Grants
CRCNS: Decision dynamics in cortico-basal ganglia-thalamic networks
CRCNS:皮质-基底节-丘脑网络的决策动态
- 批准号:
10830650 - 财政年份:2023
- 资助金额:
$ 10.83万 - 项目类别:
Basal ganglia circuit mechanisms for threat coping
应对威胁的基底神经节回路机制
- 批准号:
10727893 - 财政年份:2023
- 资助金额:
$ 10.83万 - 项目类别:
The thalamic link between cerebellum and basal ganglia: A new approach to the treatment of dystonia
小脑和基底神经节之间的丘脑联系:治疗肌张力障碍的新方法
- 批准号:
489739 - 财政年份:2023
- 资助金额:
$ 10.83万 - 项目类别:
Operating Grants
Dissecting functional subgroups and closed-loop circuits between the pedunculopontine nucleus and the basal ganglia
解剖桥脚核和基底神经节之间的功能亚组和闭环回路
- 批准号:
10677467 - 财政年份:2023
- 资助金额:
$ 10.83万 - 项目类别:
Cortical basal ganglia network dynamics during human gait control
人类步态控制过程中的皮质基底神经节网络动力学
- 批准号:
10567272 - 财政年份:2023
- 资助金额:
$ 10.83万 - 项目类别:
Circuit-Inspired Strategies to Restore Basal Ganglia Function in Mouse Models of Parkinson’s Disease
恢复帕金森病小鼠模型基底神经节功能的受电路启发的策略
- 批准号:
10665167 - 财政年份:2023
- 资助金额:
$ 10.83万 - 项目类别:














{{item.name}}会员




