Development of an automated healthcare system for effective management of patients with chronic diseases.
开发自动化医疗保健系统,以有效管理慢性病患者。
基本信息
- 批准号:10348181
- 负责人:
- 金额:$ 72.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-13 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAlgorithmsArtificial IntelligenceAugmented RealityAuscultationAutomationBiometryBloodBlood PressureCaringChestChronicChronic DiseaseClient satisfactionClinicClinicalClinical Decision Support SystemsClinical effectivenessComputer Vision SystemsComputer softwareDataDecentralizationDependenceDevelopmentDevicesDiagnosisDiagnosticDiffusionDropsEarElectronic Health RecordEnvironmentFamily memberFutureHealth ExpendituresHealth PersonnelHealth ProfessionalHealth Services AccessibilityHealth StatusHealthcareHealthcare SystemsHeartHypersensitivityImageInfrastructureInjectableLocationLungMeasurementMeasuresMedicalMedical AssistanceMedical DeviceMedical RecordsMedicineMissionModelingMonitorNoseOral cavityOtoscopesOutcomeOxygenPatient-Focused OutcomesPatientsPerformancePersonsPharmaceutical PreparationsPharyngeal structurePhasePositioning AttributePrimary Health CareProtocols documentationProviderRecording of previous eventsReportingResearch PersonnelRespiratory SoundsSelf AssessmentSelf-ExaminationSiteSite VisitSmall Business Innovation Research GrantStethoscopesStructureSymptomsSystemTelemedicineTemperatureTestingTherapeuticThermometersTimeValidationVisitWeightWorkaccurate diagnosisaging populationbasecare deliveryclinical decision supportcommercializationcostdesigndiagnostic tooldigitalhealth care deliveryhealth care qualityimprovedinnovationinterestinventionnovelnovel strategiespressurepreventproduct developmentresearch and developmentrespiratorysoundsupport toolsunhealthy lifestyleurgent careusabilityvolunteer
项目摘要
PROJECT SUMMARY
Care delivery at primary and urgent clinics is critically hindered by doctor shortage, time constraints and the
inappropriate use of infrastructures. The rising aging population and unhealthy lifestyle are expected to drive the
increase of chronic disease and the national health expenditures associated (20% of the U.S. gross domestic
product by 2025). Telemedicine has been proposed as a possible solution to reduce the cost of access to care
minimizing the dependence of patients on health professionals. However, current solutions that connect patients
with doctors don’t allow accurate diagnosis due to the lack or inappropriate use of medical devices. AdviNOW
proposes to implement computer vision to offer a clinically reliable approach to perform self- evaluation of vital
parameters. AdviNOW is developing the first Augmented Reality (AR) algorithms to guide any non-trained people
to correct usage of Class 2 medical devices at the point of need. The new approach will represent the core
component of a novel clinical decision support system (CDSS) which will be integrated into telemedicine
platforms, kiosks or any medical office to automate medical visits, improving the management of chronic
diseases. In Phase I, we validated the feasibility of our product by developing a module for heart stethoscope
exams. Users were able to autonomously take a phonocardiogram measurement in <8 seconds, while the
system verified the correct use of the device. In this Phase II project, the additional modules required for a
minimum viable product (MVP) with significant clinical and commercial impact will be developed. This will include
modules for Respiratory Auscultation, Otoscopic Ear Examination, Mouth Examination, and temperature control.
The developed modules will be then integrated within the current front-end structure. The MVP will be validated
in a clinical setting, where its usability, benefits, and clinical effectiveness will be assessed. Additionally, the
platform will be integrated with major providers of Electronic Health Records. At the end of this SBIR Phase II
project, an MVP ready to enter the market will have been fully developed. Future R&D efforts of AdviNOW
Medical will be aimed at the development of Artificial Intelligence based diagnosis of abnormal medical conditions
from self-measured biometric parameters. The mission of AdviNOW Medical is to develop a disruptive solution
for the delivery of healthcare that is safe, effective, timely, efficient, and available in centralized and decentralized
locations. By reducing the time for routine analysis, the actual doctor-patient encounter will be more meaningful,
improving the clinical outcome as well as patient satisfaction. This invention promises to disrupt healthcare, as
providers will improve cost management and profitability by visiting more patients.
项目摘要
由于医生短缺、时间限制和医疗费用,初级和急诊诊所的医疗服务严重受阻。
基础设施使用不当。人口老龄化和不健康的生活方式预计将推动
慢性病的增加和相关的国家卫生支出(占美国国内生产总值的20%)
2025年的产品)。远程医疗已被提议作为一种可能的解决方案,以减少获得护理的费用
最大限度地减少病人对卫生专业人员的依赖。然而,目前连接患者的解决方案
由于缺乏或不适当使用医疗设备,医生不允许准确诊断。咨询
建议实施计算机视觉,以提供一种临床可靠的方法来进行自我评估的重要
参数AdviNOW正在开发第一个增强现实(AR)算法,以指导任何未经训练的人
在需要时正确使用第2类医疗器械。新方法将代表
一个新的临床决策支持系统(CDSS)的组成部分,将被集成到远程医疗
平台,信息亭或任何医疗办公室自动化医疗访问,改善慢性病的管理,
疾病在第一阶段,我们通过开发心脏听诊器模块验证了产品的可行性
考试用户能够在<8秒内自主进行心音图测量,而
系统验证了器械的正确使用。在这个第二阶段项目中,
将开发具有重大临床和商业影响的最小可行产品(MVP)。这将包括
呼吸听诊、耳镜检查、口腔检查和温度控制模块。
开发的模块将被整合到当前的前端结构中。MVP将被确认
在临床环境中,将评估其可用性、受益和临床有效性。另夕h
该平台将与电子健康记录的主要提供商集成。在SBIR第二阶段结束时,
项目,准备进入市场的MVP将得到充分开发。AdviNOW未来的研发工作
医疗将致力于发展基于人工智能的异常医疗状况诊断
自我测量的生物特征参数。AdviNOW Medical的使命是开发颠覆性解决方案
提供安全、有效、及时、高效的集中和分散的医疗保健服务
地点通过减少常规分析的时间,实际的医患接触将更有意义,
改善临床结果以及患者满意度。这项发明有望颠覆医疗保健,
医疗服务提供者将通过访问更多的病人来改善成本管理和盈利能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margot Yann其他文献
Margot Yann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
- 批准号:
2236926 - 财政年份:2023
- 资助金额:
$ 72.38万 - 项目类别:
Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
- 批准号:
LP210200798 - 财政年份:2023
- 资助金额:
$ 72.38万 - 项目类别:
Linkage Projects
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
- 批准号:
2765246 - 财政年份:2022
- 资助金额:
$ 72.38万 - 项目类别:
Studentship
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 72.38万 - 项目类别:
Standard Grant
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
- 批准号:
ES/R00983X/2 - 财政年份:2022
- 资助金额:
$ 72.38万 - 项目类别:
Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 72.38万 - 项目类别:
Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
- 批准号:
10683803 - 财政年份:2022
- 资助金额:
$ 72.38万 - 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
- 批准号:
460558 - 财政年份:2022
- 资助金额:
$ 72.38万 - 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
- 批准号:
RGPIN-2022-04417 - 财政年份:2022
- 资助金额:
$ 72.38万 - 项目类别:
Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
- 批准号:
10544772 - 财政年份:2022
- 资助金额:
$ 72.38万 - 项目类别: