Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
基本信息
- 批准号:10350387
- 负责人:
- 金额:$ 34.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAntibodiesAreaBasic ScienceBiological ProductsBiomedical ResearchBypassCD47 geneCell LineCell NucleusCell membraneCellsClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesComplementComplement component C1CytosolDiffusionDoseEffectivenessElectroporationEncapsulatedEndosomesEngineeringEnzymesExhibitsExtracellular SpaceGTP-Binding ProteinsGene DeliveryGoalsHeterogeneityHumanImmune responseIn VitroIntracellular SpaceKnock-outMeasuresMediatingMethodsMicroinjectionsModificationMolecular WeightNucleic AcidsOrganismPathway interactionsPhenotypeProductionProteinsPublishingRNA InterferenceRNA SequencesResearchResistanceRibonucleoproteinsSafetySpecificitySurfaceSystemTechnologyTestingTherapeuticTimeToxic effectTransfectionViraladaptive immune responsebasecellular engineeringdesignexosomeextracellular vesiclesgene functionhuman diseaseimmunogenicityimprovedin vivoinnovationinterestmacromoleculemicrovesiclesnanobodiesnew technologynovel therapeutic interventionnovel therapeuticsprogramsprotein aggregationprotein degradationprotein functionsuccesssystemic toxicitytooltranslational medicinetreatment strategyubiquitin-protein ligasevesicular stomatitis virus G protein
项目摘要
Project Summary
Technologies to deliver macromolecules across the plasma membrane and bypass endosome degradation are
not only instrumental for elucidating gene function but also hold enormous potential for therapeutics. Proteins,
nucleic acids, and ribonucleoproteins (RNP) have become indispensable tools for biomedical research, however,
their applications in human therapeutics are largely limited to modulating targets reside in the extracellular space.
Only a few percent of exogenous macromolecules can get through the cellular barriers and make it into the
intracellular space. Extracellular vesicles (EVs) are increasingly being explored as potential vehicles for
intracellular therapeutics delivery since they transport bioactive molecules natively between cells. Cell derived
EVs are heterogeneous in size and composition and, consequently, exhibit low specific activity for delivering
cargo of interest. To address these problems, we developed an innovative macromolecule delivery system
based on engineered extracellular vesicles called gectosomes (G protein ectosomes), designed to co-
encapsulate vesicular stomatitis virus G protein (VSV-G) with bioactive macromolecules via split GFP
complementation. The reversible tethering of cargo to VSV-G provides efficient cargo loading and endosomal
escape simultaneously. Gectosomes demonstrated efficient delivery of catalytic enzymes, interference RNA,
and Cas9 RNPs to the cytosol and nucleus and successful modifications of cellular phenotypes. We aim to
develop a versatile and broadly applicable platform technology that allows rapid production of highly specific
gectosomes capable of modulating intracellular targets in vitro and in vivo. The objective of this application is to
demonstrate the feasibility of our approach by improving the homogeneity of gectosomes through CRISPR
engineering of the producer cells and by creating gectosomes that deliver engineered nanobodies or ubiquitin
E3 ligase CRBN intracellularly to alter protein aggregation or degradation. We will also examine host immune
responses to gectosomes and elucidate the efficacy window of gectosome delivery in vivo, which will help refine
application areas. The feasibility of proposed studies is supported by our published results showing that active
loading of gectosomes reduces passive incorporation of cellular proteins while CRISPR engineering of producer
cells improves EV homogeneity. Three specific aims are: SA1: Develop new producer cell lines via CRISPR-
mediated cell engineering to improve the homogeneity and specificity of gectosomes; SA2: Develop gectosomes
to deliver antibodies or agents designed for promoting targeted protein degradation in cells, and SA3: Determine
adaptive immune responses to gectosomes and general toxicity profiles of gectosomes. The proposed studies
will overcome current limitations in delivering biologics to the intracellular space. The improved delivery platform
will also provide more accessible research tools for the wider scientific community in their endeavors to elucidate
gene function or develop new therapeutic strategies for treatment of human diseases.
项目摘要
递送大分子穿过质膜并绕过内体降解的技术是
这不仅有助于阐明基因功能,而且在治疗方面具有巨大的潜力。蛋白质,
核酸和核糖核蛋白(RNP)已经成为生物医学研究不可或缺的工具,然而,
它们在人类治疗中的应用主要限于调节存在于细胞外空间中的靶。
只有百分之几的外源性大分子可以通过细胞屏障进入细胞,
胞内空间细胞外囊泡(EV)越来越多地被探索作为用于治疗糖尿病的潜在载体。
因为它们在细胞之间天然地运输生物活性分子,所以它们是细胞内治疗剂递送。细胞衍生
EV在尺寸和组成上是异质的,因此,对于递送具有低比活性的药物,
感兴趣的货物为了解决这些问题,我们开发了一种创新的高分子递送系统,
基于被称为gectosomes(G蛋白ectosomes)的工程化细胞外囊泡,其被设计为与
通过裂解GFP将生物活性大分子包裹在水泡性口炎病毒G蛋白(VSV-G)中
互补货物与VSV-G的可逆拴系提供了有效的货物装载和内体转运。
同时逃跑Gectosomes证明了催化酶,干扰RNA,
和Cas9 RNP到细胞质和细胞核以及细胞表型的成功修饰。我们的目标是
开发通用和广泛适用的平台技术,允许快速生产高度特定的
能够在体外和体内调节细胞内靶点的gectosomes。本申请的目的是
通过CRISPR提高gectosomes的均一性,证明了我们方法的可行性。
生产细胞的工程化以及通过产生递送工程化纳米抗体或泛素的外泌体
E3在细胞内连接酶CRBN以改变蛋白质聚集或降解。我们还将检查宿主免疫
反应,并阐明了体内gectosome递送的有效窗口,这将有助于完善
应用领域。我们公布的结果表明,拟议研究的可行性得到了支持,
装载gectosomes减少了细胞蛋白的被动掺入,而生产者的CRISPR工程化
电池改善EV均匀性。SA 1:通过CRISPR开发新的生产细胞系-
介导的细胞工程,以提高gectosomes的均一性和特异性; SA 2:开发gectosomes
用于递送设计用于促进细胞中靶向蛋白质降解的抗体或试剂,以及SA 3:确定
对gectosomes的适应性免疫应答和gectosomes的一般毒性特征。拟议的研究
将克服目前将生物制剂递送到细胞内空间的限制。改进的交付平台
还将为更广泛的科学界提供更容易获得的研究工具,
基因功能或开发用于治疗人类疾病的新治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XUEDONG LIU其他文献
XUEDONG LIU的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XUEDONG LIU', 18)}}的其他基金
Neuron Specific mRNA Transfer With Fusogenic Microvesicles
使用融合微泡进行神经元特异性 mRNA 转移
- 批准号:
10578732 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
- 批准号:
10544761 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
- 批准号:
10798752 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Development of a Gectosome Therapy for Cardiovascular Diseases
心血管疾病的基因组疗法的开发
- 批准号:
10384422 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Neuron Specific mRNA Transfer With Fusogenic Microvesicles
使用融合微泡进行神经元特异性 mRNA 转移
- 批准号:
10451377 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Programmable Microvesicles for Intracellular Macromolecule Delivery
用于细胞内大分子递送的可编程微泡
- 批准号:
10676021 - 财政年份:2022
- 资助金额:
$ 34.27万 - 项目类别:
Quantitative Analysis of Mechanochemical Signaling in Wound Response
伤口反应中机械化学信号的定量分析
- 批准号:
9303654 - 财政年份:2016
- 资助金额:
$ 34.27万 - 项目类别:
Quantitative Analysis of Mechanochemical Signaling in Wound Response
伤口反应中机械化学信号的定量分析
- 批准号:
9353292 - 财政年份:2015
- 资助金额:
$ 34.27万 - 项目类别:
Quantitative Analysis of Mechanochemical Signaling in Wound Response
伤口反应中机械化学信号的定量分析
- 批准号:
8913630 - 财政年份:2015
- 资助金额:
$ 34.27万 - 项目类别:
相似海外基金
University of Aberdeen and Vertebrate Antibodies Limited KTP 23_24 R1
阿伯丁大学和脊椎动物抗体有限公司 KTP 23_24 R1
- 批准号:
10073243 - 财政年份:2024
- 资助金额:
$ 34.27万 - 项目类别:
Knowledge Transfer Partnership
Role of Natural Antibodies and B1 cells in Fibroproliferative Lung Disease
天然抗体和 B1 细胞在纤维增生性肺病中的作用
- 批准号:
10752129 - 财政年份:2024
- 资助金额:
$ 34.27万 - 项目类别:
CAREER: Next-generation protease inhibitor discovery with chemically diversified antibodies
职业:利用化学多样化的抗体发现下一代蛋白酶抑制剂
- 批准号:
2339201 - 财政年份:2024
- 资助金额:
$ 34.27万 - 项目类别:
Continuing Grant
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 34.27万 - 项目类别:
Research Grant
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
- 批准号:
10076445 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别:
Grant for R&D
Discovery of novel nodal antibodies in the central nervous system demyelinating diseases and elucidation of the mechanisms through an optic nerve demyelination model
发现中枢神经系统脱髓鞘疾病中的新型节点抗体并通过视神经脱髓鞘模型阐明其机制
- 批准号:
23K14783 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the mechanisms controlling the physicochemical properties and functions of supercharged antibodies and development of their applications
阐明控制超电荷抗体的理化性质和功能的机制及其应用开发
- 批准号:
23KJ0394 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Role of antibodies in hepatitis E virus infection
抗体在戊型肝炎病毒感染中的作用
- 批准号:
10639161 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别:
Defining the protective or pathologic role of antibodies in Post-Ebola Syndrome
定义抗体在埃博拉后综合症中的保护或病理作用
- 批准号:
10752441 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别:
Human CMV monoclonal antibodies as therapeutics to inhibit virus infection and dissemination
人 CMV 单克隆抗体作为抑制病毒感染和传播的治疗药物
- 批准号:
10867639 - 财政年份:2023
- 资助金额:
$ 34.27万 - 项目类别:














{{item.name}}会员




