Control of topoisomerase activity during DNA replication by bacterial chromosome structuring proteins
细菌染色体结构蛋白在 DNA 复制过程中控制拓扑异构酶活性
基本信息
- 批准号:10359857
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-16 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAwardBacteriaBacterial ChromosomesBacterial InfectionsBindingBiochemicalBiological AssayBuffersCaulobacterCaulobacter crescentusCell DeathCellsChIP-seqChromosome StructuresChromosomesClinicCo-ImmunoprecipitationsCoupledDNADNA BindingDNA SequenceDNA StructureDNA Topoisomerase IVDNA TopoisomerasesDNA biosynthesisDNA replication forkDNA sequencingDNA-Directed DNA PolymeraseDiseaseEnsureEnzymesEukaryotaFutureGenesGenomeHeadImmunoprecipitationIn VitroLightMagnetismMalignant NeoplasmsMass Spectrum AnalysisMediatingModelingMovementMycobacterium smegmatisPhasePlayPolymeraseProteinsPseudomonas aeruginosaRoleStressStructural ProteinStructureSuperhelical DNATestingTherapeuticTimeTopoisomeraseTrainingWorkantimicrobialbasebiophysical techniquesclinically relevantdrug developmentexperimental studygenetic approachgenome-widehelicasein vitro activityin vivorRNA Operontherapeutic target
项目摘要
DNA replication is stressful because unwinding of the DNA strands by the replication fork generates highly
structured, supercoiled DNA that must be removed or else the replication fork will stall. DNA topoisomerases
are ubiquitous enzymes that are essential for relaxing the supercoiling barriers formed during DNA replication.
Although the mechanisms of how topoisomerases relieve DNA strain have been well-described, how these
enzymes are regulated in vivo and how they are localized to specific regions of the genome, e.g., ahead of
replication forks, remains poorly understood. As therapeutics that target topoisomerases are used to treat
disorders such as cancer and bacterial infections, a better understanding of these enzymes will be key for
future drug development. My postdoctoral studies identified an essential chromosome structuring protein
called GapR in the bacterium Caulobacter crescentus that is required for replication and specifically
recognizes overtwisted DNA, such as the DNA ahead of replication forks. Critically, GapR also stimulates the
activity of bacterial topoisomerases, gyrase and topo IV, to relax highly supercoiled DNA by an unknown
mechanism. This proposal will examine new regulatory paradigms by investigating how chromosome
structuring proteins such as GapR control topoisomerase activity during replication. Aim 1 will elucidate the
mechanisms by which GapR stimulates topoisomerase activity. I will perform co-immunoprecipitation assays to
determine if GapR interacts with topoisomerases to stimulate their activities. Alternatively, or in addition, GapR
could trap supercoiling by binding overtwisted DNA and consequently allow these trapped supercoils to be
more efficiently relaxed by gyrase and topo IV. I will test this idea by examining how GapR interacts with DNA
using magnetic tweezers. Lastly, I will use magnetic tweezers to directly assess how GapR stimulates the
topoisomerase catalytic cycle. Aim 2 will examine how GapR regulates topoisomerase localization and activity
to promote replication. I will determine how loss of GapR affects topoisomerase binding with ChIP-seq and
develop assays to examine topoisomerase activity genome-wide by sequencing the DNA trapped in
catalytically active topoisomerases. I will also assess how loss of GapR affects replication fork progression,
particularly in regions that have hyper supercoiling, by examining binding of replicative helicase with ChIP-seq.
In Aim 3, I will search for additional, GapR-like topoisomerase co-factors using mass spectrometry and
transposon-based screens. I will subsequently characterize any identified co-factor proteins with biochemical,
biophysical, and genetic approaches. The experiments within these aims will be initiated during the K99 phase
of the award and will include training with magnetic tweezers to study topoisomerase mechanism and high-
throughput approaches to study topoisomerase activity in vivo. Together, the experiments in this proposal will
describe how cells use topoisomerase co-factor proteins to buffer against the stresses generated during DNA
replication and identify potential targets for future antimicrobial therapeutics.!
DNA复制是有压力的,因为复制叉子解开DNA链会产生很高的
必须去除的结构化的超螺旋DNA,否则复制叉将停滞。DNA拓扑异构酶
是普遍存在的酶,对于放松DNA复制过程中形成的超螺旋障碍是必不可少的。
尽管拓扑异构酶如何缓解DNA菌株的机制已经被很好地描述,但这些机制是如何
酶在体内受到调节,以及它们如何定位到基因组的特定区域,例如,在
复制分叉,仍然知之甚少。作为以拓扑异构酶为靶点的治疗药物
癌症和细菌感染等疾病,更好地了解这些酶将是
未来的药物开发。我的博士后研究发现了一种重要的染色体结构蛋白
在新月形杆菌中称为GapR,它是复制所必需的,特别是
识别过度扭曲的DNA,例如复制分叉之前的DNA。关键的是,GapR还刺激了
细菌拓扑异构酶、旋转酶和拓扑异构酶IV松弛高度超螺旋DNA的活性未知
机制。这项提案将通过研究染色体是如何
结构蛋白如GapR在复制过程中控制拓扑异构酶的活性。目标1将阐明
GapR刺激拓扑异构酶活性的机制。我会进行免疫共沉淀分析
确定GapR是否与拓扑异构酶相互作用以刺激其活性。可替换地或附加地,GapR
可以通过结合过度扭曲的DNA来捕获超级螺旋,从而允许这些被捕获的超级螺旋
通过旋转酶和Topo IV更有效地放松。我将通过研究GapR与DNA的相互作用来测试这一想法
使用磁性镊子。最后,我将使用磁镊子直接评估GapR如何刺激
拓扑异构酶催化循环。目标2将研究GapR如何调节拓扑异构酶的定位和活性
以促进复制。我将确定GapR的缺失如何影响拓扑异构酶与ChIP-Seq和
通过对捕获的DNA进行测序,建立检测全基因组拓扑异构酶活性的方法
具有催化活性的拓扑异构酶。我还将评估GapR的丢失如何影响复制分叉进程,
特别是在具有超螺旋的区域,通过检查复制解旋酶与芯片序列的结合。
在目标3中,我将使用质谱学和
基于转座子的屏幕。我随后将用生化方法鉴定任何已鉴定的辅因子蛋白,
生物物理学和遗传学方法。这些目标内的实验将在K99阶段启动
将包括使用磁镊子进行培训,以研究拓扑异构酶机制和高密度脂蛋白。
通过性方法研究体内拓扑异构酶活性。总而言之,这项提案中的实验将
描述细胞如何使用拓扑异构酶辅助因子蛋白来缓冲DNA过程中产生的压力
复制并确定未来抗菌疗法的潜在靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Monica S. Guo其他文献
Evolutionary Convergence of Pathway-Specific
特定途径的进化趋同
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
James C. Taggart;Monica S. Guo;Lydia Herzel;Ariel Schieler;Gene - 通讯作者:
Gene
Monica S. Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Monica S. Guo', 18)}}的其他基金
Control of topoisomerase activity during DNA replication by bacterial chromosome structuring proteins
细菌染色体结构蛋白在 DNA 复制过程中控制拓扑异构酶活性
- 批准号:
10379402 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
Control of topoisomerase activity during DNA replication by bacterial chromosome structuring proteins
细菌染色体结构蛋白在 DNA 复制过程中控制拓扑异构酶活性
- 批准号:
9978843 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
Control of topoisomerase activity during DNA replication by bacterial chromosome structuring proteins
细菌染色体结构蛋白在 DNA 复制过程中控制拓扑异构酶活性
- 批准号:
10586150 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
Control of topoisomerase activity during DNA replication by bacterial chromosome structuring proteins
细菌染色体结构蛋白在 DNA 复制过程中控制拓扑异构酶活性
- 批准号:
9805617 - 财政年份:2019
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Cooperative Agreement
NSF Engines Development Award: Building an sustainable plastics innovation ecosystem in the Midwest (MN, IL)
NSF 引擎发展奖:在中西部(明尼苏达州、伊利诺伊州)建立可持续塑料创新生态系统
- 批准号:
2315247 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Cooperative Agreement
NSF Engines Development Award: Creating climate-resilient opportunities for plant systems (NC)
NSF 发动机开发奖:为工厂系统创造气候适应机会 (NC)
- 批准号:
2315399 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Cooperative Agreement
International Partnering Award: Using AI to assess senescence and mitochondrial morphology in calcifying VSMCs
国际合作奖:利用人工智能评估钙化 VSMC 的衰老和线粒体形态
- 批准号:
BB/Y513982/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Durham University
2024 年开放访问区块奖 - 杜伦大学
- 批准号:
EP/Z531480/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Goldsmiths College
2024 年开放获取区块奖 - 金史密斯学院
- 批准号:
EP/Z531509/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Open Access Block Award 2024 - John Innes Centre
2024 年开放访问区块奖 - 约翰·英尼斯中心
- 批准号:
EP/Z53156X/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Open Access Block Award 2024 - London School of Economics & Pol Sci
2024 年开放获取区块奖 - 伦敦政治经济学院
- 批准号:
EP/Z531625/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Oxford Brookes University
2024 年开放获取区块奖 - 牛津布鲁克斯大学
- 批准号:
EP/Z531728/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
Open Access Block Award 2024 - The Francis Crick Institute
2024 年开放获取区块奖 - 弗朗西斯·克里克研究所
- 批准号:
EP/Z531844/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant