DNA Base Detection Using 2D Materials Beyond Graphene
使用石墨烯以外的 2D 材料进行 DNA 碱基检测
基本信息
- 批准号:10360199
- 负责人:
- 金额:$ 42.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AreaAwardBiologicalCompetenceCouplingDNADNA sequencingDetectionDisadvantagedDiscriminationElectronicsEnvironmentGenetic DiseasesGoalsHuman GeneticsHydrophobicityIndividualIonsKnowledgeLabelLeadLengthMeasurementMethodsModalityModelingNatureNoiseNucleotidesOklahomaPropertyPublic HealthReadingResearchResearch TrainingSideSignal TransductionSpeedStudentsSurfaceSystemTechniquesTemperatureTimeTrainingTransition ElementsUniversitiesVariantWaterbasebiomaterial compatibilitycancer geneticscomputer studiescostcost effectivedesigngraduate studentgraphenehydrophilicityimprovedinsightinterestmathematical abilitynanoporeskillstwo-dimensionalundergraduate studentvoltage
项目摘要
PROJECT SUMMARY/ABSTRACT
Two-dimensional (2D) materials have emerged as revolutionary materials for fast, single-nucleotide direct-read
DNA sequencing with a minimum amount of consumables. Due to its commercial availability, graphene remains
the most widely explored 2D material for DNA sequencing applications. The major hindrance of graphene is the
hydrophobic nature of its surface which causes DNA bases to stick to its surface, slowing down translocation
speed, and making single-base discrimination difficult as multiple bases interact with graphene at any given time.
Furthermore, the lack of a band gap in pristine graphene makes it undesirable for use in electronic detection
modalities. With all the disadvantages of graphene, we strongly believe that graphene will not be the ultimate
material for DNA sequencing. More promising in our view are approaches that explore the conductive properties
of various 2D materials beyond graphene. The primary goal of this research is to perform large-scale, first-
principles computational studies to evaluate various 2D materials beyond graphene for faster and affordable
DNA sequencing using electronic methods. A secondary goal is to train undergraduate and graduate students
in computational materials modeling. To accomplish our goals, we will focus on three independent, but
interrelated specific aims as outlined below: (1) DNA base detection using elemental 2D materials. In Aim 1,
we will expand on existing studies involving graphene for DNA base detection to include other elemental 2D
materials such as silicene, germanene, and phosphorene. One of the major goals of Aim 1 is the research
training of undergraduate students. (2) DNA base detection using 2D transition metal dichalcogenides
(TMDs). We will perform a comprehensive study of DNA sequencing using six of the most popular TMDs (MoS2,
WS2, MoSe2, WSe2, MoTe2, and WTe2). These materials have desirable properties such as tunable direct band
gap, excellent mobility, and they are easy to fabricate. Moreover, due to their hydrophilic nature, we anticipate
strong couplings with bases on the DNA that can enhance the tunneling currents leading to improved signal-to-
noise ratios. (3) DNA base detection using van der Waals (vdW) materials. This activity will shift the current
paradigm in DNA sequencing, because we will evaluate, for the first time, the potential of vdW heterostructures
for DNA sequencing. vdW systems formed by combining two or more single-layer 2D materials allow for a greater
number of potential sensing materials. Also, the synergetic effects produced when different materials are
combined could lead to advanced detection principles that are superior to those of the individual materials. The
impact of our research will be deeper insights that will help guide the integration of 2D materials as active
components of electronic devices for direct-read, affordable DNA sequencing. This award will strengthen the
research environment at the University of Central Oklahoma and engage students in computational research.
Our research plan has specifically been designed to optimize the utilization of students with diverse background
and interests.
项目摘要/摘要
二维(2D)材料已经成为快速、单核苷酸直接读取的革命性材料
最小消耗量的DNA测序。由于其商业上的可用性,石墨烯仍然
最广泛探索的用于DNA测序应用的2D材料。石墨烯的主要障碍是
其表面的疏水性,导致DNA碱基粘在其表面,从而减缓了移位
由于多个碱基在任何给定时间与石墨烯相互作用,使得单碱基识别变得困难。
此外,原始石墨烯中没有带隙,因此不适合用于电子检测。
医疗模式。尽管石墨烯有所有缺点,但我们坚信石墨烯不会是终极产品
用于DNA测序的材料。在我们看来,更有希望的是探索导电性能的方法
石墨烯以外的各种2D材料。这项研究的主要目标是进行大规模的,首先
评估石墨烯以外的各种2D材料的原理计算研究,以实现更快和负担得起的
使用电子方法进行DNA测序。第二个目标是培养本科生和研究生。
在计算材料建模中。为了实现我们的目标,我们将专注于三个独立的、但
相关的具体目标概述如下:(1)利用元素2D材料进行DNA碱基检测。在目标1中,
我们将扩展现有的关于石墨烯用于DNA碱基检测的研究,以包括其他元素2D
硅烯、锗和膦等材料。目标1的主要目标之一是研究
培养本科生。(2)利用2D过渡金属二卤化物检测DNA碱基
(TMDS)。我们将使用六种最流行的TMD(MoS2,
WS2、MoSe2、WSe2、MoTe2和WTe2)。这些材料具有理想的性质,如可调谐的直达带
GAP,出色的机动性,而且它们很容易制造。此外,由于它们的亲水性,我们预计
与DNA上碱基的强偶联可以增强隧道电流,从而改善信号到
噪波比。(3)利用范德华(VDW)材料进行DNA碱基检测。这项活动将改变当前的
DNA测序的范例,因为我们将第一次评估VDW异质结构的潜力
用于DNA测序。通过组合两个或多个单层2D材料形成的VDW系统允许更大的
潜在传感材料的数量。此外,当不同的材料被
结合起来可能会产生先进的检测原理,这些原理比单独使用的材料更优越。这个
我们研究的影响将是更深入的见解,这将有助于指导2D材料的整合成为活跃的
用于直接读取、负担得起的DNA测序的电子设备的组件。这一奖项将加强
在中俄克拉荷马大学的研究环境中,并让学生参与计算研究。
我们的研究计划是专门为优化利用不同背景的学生而设计的
和利益。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Obi Tayo其他文献
Benjamin Obi Tayo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
- 批准号:
EP/Z532538/1 - 财政年份:2024
- 资助金额:
$ 42.59万 - 项目类别:
Research Grant
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
- 批准号:
2300445 - 财政年份:2023
- 资助金额:
$ 42.59万 - 项目类别:
Standard Grant
Open Access Block Award 2023 - Marine Biological Association
2023 年开放获取区块奖 - 海洋生物学协会
- 批准号:
EP/Y530116/1 - 财政年份:2023
- 资助金额:
$ 42.59万 - 项目类别:
Research Grant
Research Initiation Award: Environmental Factors Modulation of Structure-Function of Biological Systems
研究启动奖:环境因素对生物系统结构功能的调节
- 批准号:
2200650 - 财政年份:2022
- 资助金额:
$ 42.59万 - 项目类别:
Standard Grant
MRC Transition Support Award: Cell biological mechanisms underlying stem cell competition
MRC 过渡支持奖:干细胞竞争的细胞生物学机制
- 批准号:
MR/W029219/1 - 财政年份:2022
- 资助金额:
$ 42.59万 - 项目类别:
Fellowship
Open Access Block Award 2022 - Marine Biological Association
2022 年开放获取块奖 - 海洋生物学协会
- 批准号:
EP/X527415/1 - 财政年份:2022
- 资助金额:
$ 42.59万 - 项目类别:
Research Grant
Canada Partnering Award: Revealing the biological and molecular functions of organelle contacts in mammalian cells
加拿大合作奖:揭示哺乳动物细胞细胞器接触的生物学和分子功能
- 批准号:
BB/V018167/1 - 财政年份:2021
- 资助金额:
$ 42.59万 - 项目类别:
Research Grant
IGF::OT::IGF. QUANTIFICATION OF DRUGS OF ABUSE AND RELATED SUBSTANCES IN BIOLOGICAL SPECIMENS. BASE CONTRACT AWARD POP: MARCH 14, 2019 THROUGH MARCH 13, 2020. N01DA-19-8951.
IGF::OT::IGF。
- 批准号:
10591464 - 财政年份:2019
- 资助金额:
$ 42.59万 - 项目类别:
IGF::OT::IGF. QUANTIFICATION OF DRUGS OF ABUSE AND RELATED SUBSTANCES IN BIOLOGICAL SPECIMENS. BASE CONTRACT AWARD POP: MARCH 14, 2019 THROUGH MARCH 13, 2020. N01DA-19-8951.
IGF::OT::IGF。
- 批准号:
10044270 - 财政年份:2019
- 资助金额:
$ 42.59万 - 项目类别:
Catalyst Award: Integration of Biotechnology and Cyberinstruction in the Biological Sciences at Fort Valley State University
催化剂奖:福特谷州立大学生物科学领域生物技术与网络教学的整合
- 批准号:
1818695 - 财政年份:2018
- 资助金额:
$ 42.59万 - 项目类别:
Standard Grant