Somatic Mosaicism in Neuropsychiatric Disorders
神经精神疾病中的躯体镶嵌
基本信息
- 批准号:10360480
- 负责人:
- 金额:$ 3.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAttention deficit hyperactivity disorderBioinformaticsBiologicalBiological MarkersBiologyBipolar DisorderBrainCategoriesCell FractionClinicalCollaborationsCopy Number PolymorphismCortical DysplasiaDNA sequencingDataData SetDatabasesDevelopmentDiagnosisDiagnosticDimensionsDiseaseEmotionalEpilepsyEventGeneticGenetic studyGenomic SegmentGenotypeGrantHaplotypesHealthHematopoiesisIndividualInheritedMedicalMethodologyMethodsMinorityMosaicismMutationNatural SelectionsNatural experimentNeurodevelopmental DisorderOnset of illnessPathogenicityPatientsPatternPhasePlayReportingResearchRiskRoleSNP arraySchizophreniaSingle Nucleotide PolymorphismSomatic MutationTestingUnited StatesVariantWorkanalytical methodautism spectrum disorderbasebrain tissuecase controlcell typede novo mutationdiagnosis standarddiagnostic criteriadisabilityearly onsetexomegenetic architecturegenome sequencinggenomic datainsightlarge datasetsneuropsychiatric disordernovelprobandpsychiatric genomicssocialtargeted sequencingtranscriptome sequencingwhole genomeyears lived with disability
项目摘要
Project Abstract
In the United States, neuropsychiatric disorders are the leading cause of disability. These disorders can
have deep consequences on different dimensions of the individual such as social and emotional. The standard
of diagnosis is based on relatively subjective criteria that tends to dichotomize disease categories, even when
individuals have a spectrum of presentations. This discordance emphasizes the need to further understand the
underlying patient biology. In the proposed study, I will focus on Schizophrenia (SCZ), Bipolar disorder (BP),
and ADHD, because even though they have many clinical differences they contribute to a great proportion of
years lived with disability in the United states, with a combined 4.38%. In addition, SCZ is one of the top 10
global causes of disability. Even though the great health burden of these disorders is known, their biological
mechanism remains greatly unknown. Genetic studies have implicated a strong genetic component for these
disorders, including inherited variants, as well as rare de novo mutations. However, it has recently been
proposed that somatic mosaicism might contribute partly to the missing risk. Somatic mutations have shown to
play an important pathogenic role in several neurodevelopmental disorders such epileptic focal cortical
dysplasia, Sturge-Weber disorder. Our lab and others have implicated mosaic single nucleotide variants
(SNVs) as well as copy number variants (CNVs) to autism spectrum disorder (ASD). Strong overlap in the
genetic architecture of ASD in multiple neuropsychiatric disorders has been reported. This observation poses
the question of whether somatic mutations could contribute to the genetic architecture of SCZ and related
disorders.
With this grant, I propose to systematically test and characterize the contribution of somatic
mutations to the genetic architecture of neuropsychiatric disorders such as SCZ, BP, and ADHD. Aim 1
proposes to test the hypothesis that mosaic copy number variants (CNVs) contribute to these disorders. This
will be accomplished by leveraging a recently developed method by our collaborator Prof. Po Ru Loh. I will
enhance the robustness of the algorithm to varying array platforms to exploit large case-control SNP array
databases. This method will allow for the systematic identification and burden quantification of mosaic CNVs
across large datasets of SCZ, BP, ADHD from the Psychiatric Genomic Consortium. Aim 2 proposes to test the
hypothesis that mosaic SNVs contribute to these disorders. This will be accomplished by developing
methodology to identify mosaic SNVs from brain derived RNA-seq data, since there have been growing brain
derived RNA-seq databases for neuropsychiatric disorders with enough coverage to identify somatic SNVs
compared to whole exome and whole genome sequencing efforts. With this novel method it will be possible to
systematically characterize mutational burden and patterns across SCZ and BP from readily available datasets
from PsychEncode, CommonMind, and BrainSpan.
项目摘要
在美国,神经精神障碍是导致残疾的主要原因。这些障碍可能
对个人的不同维度有深刻的影响,如社会和情感。标准
诊断基于相对主观的标准,倾向于将疾病类别一分为二,即使在
每个人都有不同的演讲方式。这种不一致强调了需要进一步理解
潜在的病人生物学。在拟议的研究中,我将重点关注精神分裂症(SCZ)、双相情感障碍(BP)、
和ADHD,因为尽管他们有许多临床差异,但他们在很大程度上导致了
在美国,残疾人生活的年数加起来为4.38%。此外,SCZ还跻身于前十名
全球残疾原因。尽管这些疾病造成的巨大健康负担是已知的,但它们的生物学
其机制仍很不清楚。遗传学研究表明,这些基因有很强的遗传成分
疾病,包括遗传变异,以及罕见的从头开始突变。然而,它最近一直在
提出体细胞嵌合体可能是缺失风险的部分原因。体细胞突变已经表明
在几种神经发育障碍中发挥重要的致病作用,如癫痫局灶性皮质
发育不全,斯特奇-韦伯障碍。我们的实验室和其他实验室发现了马赛克单核苷酸变异
(SNV)以及拷贝数变异(CNV)到自闭症谱系障碍(ASD)。有很强的重叠性
ASD在多种神经精神障碍中的遗传结构已有报道。这一观察结果表明
体细胞突变是否有助于SCZ及其相关基因结构的问题
精神错乱。
有了这笔赠款,我建议系统地测试和表征躯体细胞的贡献
神经精神障碍的遗传结构突变,如SCZ、BP和ADHD。目标1
建议检验马赛克拷贝数变异(CNV)导致这些疾病的假设。这
将利用我们的合作者陆宝如教授最近开发的方法来完成。这就做
增强算法对不同阵列平台的健壮性,以利用大型病例控制SNP阵列
数据库。这种方法将允许系统地识别和量化镶嵌CNV
来自精神病学基因组联盟的SCZ、BP、ADHD的大型数据集。目标2建议测试
马赛克SNV与这些疾病有关的假说。这将通过开发
从大脑来源的RNA-SEQ数据中识别镶嵌SNV的方法,因为存在着成长中的大脑
用于神经精神疾病的衍生RNA-SEQ数据库,具有足够的覆盖率以识别躯体SNV
与整个外显子组和全基因组测序工作相比。有了这种新方法,就有可能
从现成的数据集系统地描述SCZ和BP之间的突变负担和模式
来自心理编码、CommonMind和BrainSpan。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eduardo Antonio Maury其他文献
Eduardo Antonio Maury的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eduardo Antonio Maury', 18)}}的其他基金
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 3.36万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 3.36万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 3.36万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 3.36万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 3.36万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 3.36万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 3.36万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 3.36万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 3.36万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 3.36万 - 项目类别:
Continuing Grant