Control of Dendritic Spine Stability via Regulation of a Stable Actin Pool
通过稳定肌动蛋白库的调节控制树突棘稳定性
基本信息
- 批准号:10365989
- 负责人:
- 金额:$ 39.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsAffinityAttenuatedBindingBiochemistryBiological AssayBrainCellsCollectionComplementComplexCryoelectron MicroscopyCytoskeletonDataDendritic SpinesDeuteriumEMS1 geneExcitatory SynapseExhibitsF-ActinFilamentHippocampus (Brain)HydrogenIn VitroInfrastructureLengthMaintenanceMajor Depressive DisorderMapsMass Spectrum AnalysisMeasurementMeasuresMediatingMental disordersMicrofilamentsMicroscopyMolecularMusMutationN-Methyl-D-Aspartate ReceptorsNeuronsPhosphotransferasesProtein Tyrosine KinaseProteinsProteolysisRegulationResolutionRoleSchizophreniaStable PopulationsStructureSynapsesTestingVertebral columnWorkalpha Actinbasecohortdensityexperimental studyinterdisciplinary approachknock-downmonomermutantnervous system disorderneural circuitneurotransmissionnovelpostnatalpostsynapticprematurepreservationprotein functionprotein protein interactionrecruitstoichiometry
项目摘要
Proper control of the actin cytoskeleton is critical for long-term stability of spines, which are destabilized
prematurely in psychiatric and neurological disorders. Dendritic spines contain at least two distinct pools of
filamentous- (F-) actin, a small stable pool that turns over slowly and resides within the central core of the
spine, and a larger dynamic pool that extends from the central core to the spine periphery. What mechanisms
control these distinct F-actin pools, how the pools interface with the neurotransmission machinery, and how
they contribute to dendritic spine plasticity and stability are fundamental unresolved questions in the field.
Our lab discovered that disruption of the Abl2/Arg nonreceptor tyrosine kinase causes widespread postnatal
dendritic spine destabilization and synapse loss. In addition to being a kinase, Arg binds F-actin and cortactin,
and Arg and cortactin synergize to stabilize F-actin and activate F-actin branch nucleation by the Arp2/3
complex. We hypothesize that Arg recruits cortactin to spines, promotes its binding to F-actin, and together Arg
and cortactin maintain the stable F-actin pool to stabilize spines. We will test this hypothesis in three Aims:
Our first aim will define the molecular basis for cortactin binding to F-actin. We hypothesize that cortactin's
ability to bind F-actin is essential for it to regulate F-actin dynamics and mediate dendritic spine stability, but we
completely lack a high-resolution understanding of how cortactin binds F-actin. We find that the cortactin
repeats (CR) domain is natively unfolded in solution, but we can obtain CR:F-actin complexes suitable for high
resolution structure determination using cryo-EM. We will also use CR domain truncations in tandem with
hydrogen-deuterium exchange mass spectrometry to map residues at the cortactin:F-actin binding interface.
Our second aim will elucidate how Arg and cortactin interact to control actin filament dynamics. The
mechanisms by which Arg and cortactin maintain the stable pool of F-actin in dendritic spines are unknown.
We find that Arg and cortactin interact to control the stability of F-actin and new actin branch nucleation in vitro.
We will use measurements of protein:protein interactions, total internal reflection microscopy-based single
actin filament assays, and structure determination via cryo-EM to understand how Arg and cortactin interact
with each other and the Arp2/3 complex to regulate F-actin stability and actin branch nucleation.
Our third aim will elucidate the role of the stable actin pool in dendritic spine infrastructure and stability. Our
preliminary data suggest that the stable F-actin pool may stabilize spines both by acting as a central organizer
of spine infrastructure and by attenuating NMDA receptor (NMDAR) activity. We will use a knockdown/complementation strategy with Arg or cortactin mutants in cultured neurons to reveal whether their actin
regulatory and/or other functions are required to maintain the spine's stable F-actin pool, regulate NMDARs,
and spine stability. We will also use live cell and super-resolution microscopy to measure how disruption of the
stable F-actin pool impacts the organization of key actin regulators and subcompartments within the spine.
肌动蛋白细胞骨架的适当控制对于不稳定的棘的长期稳定性至关重要
过早地出现精神和神经疾病。树突棘含有至少两个不同的池
丝状-(F-)肌动蛋白,一个小的稳定的池,翻转缓慢,并驻留在中央核心的
脊柱,以及从中心核心延伸到脊柱外围的更大的动态池。哪些机制
控制这些不同的F-肌动蛋白池,池如何与神经传递机制接口,以及如何
它们有助于树突棘的可塑性和稳定性,这是本领域尚未解决的基本问题。
我们的实验室发现,在出生后,
树突棘不稳定和突触丧失。除了作为激酶外,Arg还结合F-肌动蛋白和cornein,
Arg和coronin协同作用稳定F-肌动蛋白,并通过Arp 2/3激活F-肌动蛋白分支成核
复杂.我们推测,精氨酸招募coronin棘,促进其结合F-肌动蛋白,并一起精氨酸
和coronin维持稳定的F-肌动蛋白池以稳定棘。我们将在三个目标中检验这一假设:
我们的第一个目标是确定皮质素结合F-肌动蛋白的分子基础。我们假设coronann
结合F-肌动蛋白的能力对于它调节F-肌动蛋白动力学和介导树突棘稳定性是必不可少的,但是我们
完全缺乏对Cordiform如何结合F-肌动蛋白的高分辨率理解。我们发现,
重复序列(CR)结构域在溶液中天然未折叠,但我们可以获得适合于高浓度的CR:F-肌动蛋白复合物。
分辨率结构测定使用cryo-EM。我们还将使用CR结构域截短串联,
氢-氘交换质谱法以绘制core-binding:F-肌动蛋白结合界面处的残基。
我们的第二个目标将阐明精氨酸和coronin如何相互作用,以控制肌动蛋白丝动力学。的
Arg和coronin维持树突棘中F-肌动蛋白稳定池的机制尚不清楚。
我们发现,精氨酸和coronin相互作用,以控制稳定的F-肌动蛋白和新的肌动蛋白分支成核在体外。
我们将使用测量蛋白质:蛋白质相互作用,全内反射显微镜为基础的单
肌动蛋白丝测定,并通过冷冻电镜结构测定,以了解精氨酸和cornein如何相互作用
与Arp 2/3复合物相互作用以调节F-肌动蛋白稳定性和肌动蛋白分支成核。
我们的第三个目标将阐明树突棘的基础设施和稳定性的稳定肌动蛋白池的作用。我们
初步数据表明,稳定的F-肌动蛋白库可能通过充当中心组织者和细胞外基质,
脊髓基础设施和衰减NMDA受体(NMDAR)的活动。我们将在培养的神经元中使用敲低/互补策略,用Arg或coronin突变体来揭示它们的肌动蛋白
需要调节和/或其它功能来维持脊柱的稳定F-肌动蛋白库,调节NMDAR,
和脊柱稳定性。我们还将使用活细胞和超分辨率显微镜来测量细胞分裂是如何发生的。
稳定的F-肌动蛋白库影响脊柱内关键肌动蛋白调节子和亚区室的组织。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony J Koleske其他文献
Anthony J Koleske的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony J Koleske', 18)}}的其他基金
Dysregulation of TRIO GEF1 activity in neurodevelopmental disorders
TRIO GEF1 活性在神经发育障碍中的失调
- 批准号:
10714793 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Direct binding and control of microtubule elongation by Abl2
Abl2 直接结合并控制微管伸长
- 批准号:
9978453 - 财政年份:2020
- 资助金额:
$ 39.38万 - 项目类别:
Control of Dendritic Spine Stability via Regulation of a Stable Actin Pool
通过稳定肌动蛋白库的调节控制树突棘稳定性
- 批准号:
10373463 - 财政年份:2018
- 资助金额:
$ 39.38万 - 项目类别:
Control of Dendritic Spine Stability via Regulation of a Stable Actin Pool
通过稳定肌动蛋白库的调节控制树突棘稳定性
- 批准号:
10590119 - 财政年份:2018
- 资助金额:
$ 39.38万 - 项目类别:
Control of Dendritic Spine Stability via Regulation of a Stable Actin Pool
通过稳定肌动蛋白库的调节控制树突棘稳定性
- 批准号:
9895869 - 财政年份:2018
- 资助金额:
$ 39.38万 - 项目类别:
Control of Dendritic Spine Stability via Regulation of a Stable Actin Pool
通过稳定肌动蛋白库的调节控制树突棘稳定性
- 批准号:
10115123 - 财政年份:2018
- 资助金额:
$ 39.38万 - 项目类别:
Control of actin dynamics and dendritic spine stability by Arg and cortactin
Arg 和 cortactin 控制肌动蛋白动力学和树突棘稳定性
- 批准号:
8883739 - 财政年份:2014
- 资助金额:
$ 39.38万 - 项目类别:
Control of actin dynamics and dendritic spine stability by Arg and cortactin
Arg 和 cortactin 控制肌动蛋白动力学和树突棘稳定性
- 批准号:
8791215 - 财政年份:2014
- 资助金额:
$ 39.38万 - 项目类别:
Regulation of invadopodia formation in breast cancer cells
乳腺癌细胞侵袭伪足形成的调节
- 批准号:
7847676 - 财政年份:2009
- 资助金额:
$ 39.38万 - 项目类别:
Supplement to Regulation of invadopodia formation in breast cancer cells
乳腺癌细胞侵袭伪足形成调节的补充
- 批准号:
8652002 - 财政年份:2009
- 资助金额:
$ 39.38万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Continuing Grant