Development of machine learning approaches to population pharmacokinetic model selection and evaluation of application to model-based bioequivalence analysis.
开发机器学习方法来选择群体药代动力学模型并评估基于模型的生物等效性分析的应用。
基本信息
- 批准号:10375078
- 负责人:
- 金额:$ 7.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2022-08-14
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY
The proposed project is for development an evaluation of a deep learning/reinforcement
learning approach to population pharmacokinetic model selections. We proposed to develop a
command line application using the Python programing language. Python is the current industry
standard for development or artificial intelligence applications, and the required packages for
deep learning/reinforcement learning are readily available (e.g., Pytorch and Tensorflow). The
applicants have previously developed a related machine learning approach using Genetic
Algorithm. For purposes of comparison and to make the resulting application generally available,
the existing Genetic Algorithm solution will be ported to Python. Both applications (Deep
learning/reinforcement learning and Genetic Algorithm) will use NONMEM ® for parameter
estimation for the population pharmacokinetic models examined. A common solution linking the
model selection algorithm (Deep Learning/Reinforcement Learning and Genetic Algorithm) to
NONMEM will be used for both, and is currently under development, with an early version
available on github.com. This common solution will facilitate future work using other algorithms
for model selection, e.g. particle swarm optimization or simulated annealing. This work will be
completed in the first year of the project. All final code will be place in the public domain in
github.com.
The second year of the project will consist of evaluation of the solutions (Genetic algorithm
and Deep Learning/Reinforcement Learning). This evaluation will include assessment of a range
of measures of the “goodness” of the model (“fitness in Genetic Algorithm and “reward signal”
in Deep Learning/Reinforcement Learning). These measure of model “goodness” may include
objective function value, parsimony penalties, importance of successful covariance step. Within
the scope of this project, these measures will be objective and numerical. Future projects may
include the addition of subjective evaluations of model “goodness” in the model selection
algorithm.
CONFIDENTIAL Page 1 of 1
项目摘要
拟议的项目是开发一个深度学习/强化的评估
群体药代动力学模型选择的学习方法。我们建议发展一个
使用Python编程语言的命令行应用程序。Python是当前的行业
开发或人工智能应用程序的标准,以及
深度学习/强化学习是容易获得的(例如,Pytorch和Tensorflow)。的
申请人之前已经开发了一种相关的机器学习方法,
算法为了比较的目的并使得到的应用程序普遍可用,
现有的遗传算法解决方案将被移植到Python。两种应用程序(深度
学习/强化学习和遗传算法)将使用NONMEM ®作为参数
所检查的群体药代动力学模型的估计。一种常见的解决方案,
模型选择算法(深度学习/强化学习和遗传算法),
NONMEM将用于这两种情况,目前正在开发早期版本
在github.com上可以找到。这种通用的解决方案将促进未来使用其他算法的工作
用于模型选择,例如粒子群优化或模拟退火。这项工作将
在项目的第一年完成。所有最终的代码将被放置在公共领域,
github.com.
该项目的第二年将包括评估的解决方案(遗传算法
和深度学习/强化学习)。这一评价将包括评估一系列
模型的“优度”的度量(“遗传算法中的适应度”和“奖励信号”)
深度学习/强化学习(Deep Learning/Reinforcement Learning)这些模型“优良性”的度量可以包括
目标函数值,简约惩罚,成功协方差步骤的重要性。内
这些措施将是客观和数字化的。未来的项目可能
包括在模型选择中增加对模型“优度”的主观评价
算法
机密第1页,共1页
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark E Sale其他文献
The electrocardiographic effects of cetirizine in normal subjects
西替利嗪对正常人心电图的影响
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Mark E Sale;J. Barbey;R. Woosley;Dearborn Edwards;Jen Yeh;K. Thakker;M. Chung - 通讯作者:
M. Chung
Mark E Sale的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
- 批准号:
10748341 - 财政年份:2024
- 资助金额:
$ 7.29万 - 项目类别:
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
- 批准号:
10089281 - 财政年份:2024
- 资助金额:
$ 7.29万 - 项目类别:
Investment Accelerator
Development of Understanding and Preparation for Machine learning for Accelerated Carbonation Technology Pelletisation Process - Carbon8
加速碳酸化技术造粒过程的机器学习的理解和准备的发展 - Carbon8
- 批准号:
10091589 - 财政年份:2024
- 资助金额:
$ 7.29万 - 项目类别:
Collaborative R&D
Utilising Quantum Machine Learning and quantum computing for genomic research and development
利用量子机器学习和量子计算进行基因组研究和开发
- 批准号:
10083188 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Small Business Research Initiative
Development of an RNA-based test for diagnosing and monitoring bone and soft tissue cancers
开发基于 RNA 的测试来诊断和监测骨癌和软组织癌
- 批准号:
480287 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Operating Grants
Development of a correlational algorithm between oral function examination and oral-related QoL using machine learning.
使用机器学习开发口腔功能检查和口腔相关生活质量之间的相关算法。
- 批准号:
23K09302 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
- 批准号:
23H01276 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development and integration of organic solar cell and organic transistor materials using graph-based machine learning
使用基于图形的机器学习开发和集成有机太阳能电池和有机晶体管材料
- 批准号:
23H02064 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
- 批准号:
2311632 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Standard Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
- 批准号:
2301173 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Continuing Grant