Evolutionary and functional consequences of structural genetic variation in Drosophila
果蝇结构遗传变异的进化和功能后果
基本信息
- 批准号:10369357
- 负责人:
- 金额:$ 4.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimal ModelBiological AssayBiological ProcessBiological SciencesCRISPR/Cas technologyCaliforniaCatalogsClassificationComplementComplexDataDevelopmentDiseaseDrosophila genusDrosophila melanogasterEngineeringEnsureFrequenciesGene DuplicationGenerationsGeneticGenetic PolymorphismGenetic StructuresGenetic VariationGenomeGenome engineeringGenomic SegmentGenotypeGrantHeritabilityHumanHuman GenomeIndividualLinkMalignant NeoplasmsMapsMeasuresMendelian disorderMethodsMolecularMutationNatural SelectionsNicotineOrganismOther GeneticsOxidative StressPatternPesticidesPhasePhenotypePlatinumPolymorphism AnalysisPopulation GeneticsPositioning AttributeProxyResearchResistanceResourcesSNP arraySampling BiasesSchizophreniaSeriesSiteSourceStructureTrainingUniversitiesVariantbasecareercausal variantdisease phenotypeexperiencefitnessgenome editinggenome-widehuman diseasereference genomeresponsestructural genomicstheoriesthermal stresstooltrait
项目摘要
PROJECT SUMMARY
Genomic structural variants (SV) involving deletions, duplications, insertions, inversions, and translocations of
sequences are an abundant source of genetic variation. SVs have been linked to Mendelian diseases, as well
as complex heritable diseases like schizophrenia, and cancer. However, recent comparisons of extremely
contiguous genome assemblies of humans and model organism Drosophila melanogaster have revealed that
common genotyping strategies relying on high throughput short reads miss 40-80% of SVs, including those
affecting phenotypes. Thus, contribution of SVs towards diseases and phenotypic variation remain grossly
underestimated. To accurately measure the contribution of SVs towards deleterious genetic variation and trait
variation, we propose to create a comprehensive map of genomewide SVs via comparison of extremely
contiguous genome assemblies. However, contiguous de novo assembly of human genomes with high
coverage (>50X) noisy long reads remains prohibitively expensive. So I propose to analyze SVs in the 25-fold
smaller genome of model organism D. melanogaster, which has contributed substantially to our understanding
of the genetics of complex human diseases. The proposed research aims to study fitness effects of
polymorphic SVs based on de novo genome assemblies of 50 genetically diverse D. melanogaster strains that
are as complete and contiguous as the current D. melanogaster reference genome – arguably the best
metazoan genome assembly (Aim 1). I propose to use this comprehensive set of variants to infer the
distribution of fitness effects of the SVs and to estimate the proportion of adaptive SVs, both of which are
reliable proxies for the evolutionary and functional significance of SVs (Aim 1). Aim 1 will involve training in
theory and cutting edge methods in molecular population genetics. Next, the proposed project will develop an
experimental approach to determine the fitness effects of variants for which an organismal phenotype is
unknown. As part of this, the proposed project will develop genome editing resources that will facilitate rapid
transformation of one of our sequenced strains with SVs, so that fitness effects of candidate SVs from trait
mapping studies can be examined (Aim 2). Training in Aim 2 includes development of CRISPR-Cas9 toolkit in
a common genetic background to investigate the functional effects of SVs. Finally, using the toolkit developed
in Aim 2, we propose to conduct high throughput fitness assays to evaluate the selective effects of SVs under
specific selection conditions (Aim 3). The training portion of the proposed research will complement the
applicant’s previous experience and position him for a successful research career. University of California
Irvine and the Emerson and Long labs together have the resources and expertise to ensure the successful
completion of the training phase of the grant.
项目摘要
基因组结构变异体(SV),涉及缺失、重复、插入、倒位和易位,
序列是遗传变异的丰富来源。SV也与孟德尔疾病有关
像精神分裂症和癌症这样复杂的遗传性疾病。然而,最近的比较,
人类和模式生物黑腹果蝇的连续基因组组装揭示,
依赖于高通量短读段的常见基因分型策略错过了40-80%的SV,包括那些
影响表型。因此,SV对疾病和表型变异的贡献仍然很大,
低估为了准确测量SV对有害遗传变异和性状的贡献,
变异,我们建议通过比较极端的
连续的基因组组装。然而,具有高表达的人类基因组的连续从头组装,
覆盖率(> 50 X)的噪声长读段仍然非常昂贵。所以我建议分析25倍的SV
模式生物D.黑腹菌,它对我们理解
复杂的人类疾病的遗传学。拟议的研究旨在研究健身效果,
多态性SV基于50个遗传多样性D.黑腹菌菌株,
和现在的D一样完整和连续黑腹参考基因组-可以说是最好的
后生动物基因组组装(Aim 1)。我建议使用这套全面的变体来推断
分布的适应性影响的SV和估计的比例,自适应SV,这两者都是
SV进化和功能重要性的可靠代表(目标1)。目标1将涉及以下方面的培训:
分子群体遗传学的理论和前沿方法。下一步,拟议项目将开发一个
实验方法,以确定适应性的影响,其中一个有机体表型的变异,
未知作为其中的一部分,拟议的项目将开发基因组编辑资源,
用SV转化我们的一个测序菌株,使来自性状的候选SV的适应性效应
可以审查绘图研究(目标2)。目标2的培训包括开发CRISPR-Cas9工具包,
一个共同的遗传背景,调查SV的功能影响。最后,使用开发的工具包
在目标2中,我们建议进行高通量适应性测定,以评估SV在以下条件下的选择效果:
具体选择条件(目标3)。拟议研究的培训部分将补充
申请人以前的经验,并定位他为一个成功的研究生涯。加州大学
Irvine与Emerson和Long实验室共同拥有资源和专业知识,
完成赠款的培训阶段。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MAHUL CHAKRABORTY其他文献
MAHUL CHAKRABORTY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MAHUL CHAKRABORTY', 18)}}的其他基金
Evolutionary and functional consequences of structural genetic variation in Drosophila
果蝇结构遗传变异的进化和功能后果
- 批准号:
10729933 - 财政年份:2019
- 资助金额:
$ 4.49万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists