Dissecting new mechanisms of lysosome quality control in health and disease

剖析健康和疾病中溶酶体质量控制的新机制

基本信息

项目摘要

PROJECT SUMMARY Lysosomes function as critical nodes for macromolecular recycling, metabolic rewiring, and pro-growth signaling in cells. Accordingly, defects in lysosome function underlie degenerative diseases and aging while hyperactivation of lysosomes are associated with cancer. Prior studies have shown that highly aggressive Pancreatic ductal adenocarcinoma (PDA) cells upregulate lysosome biogenesis and activity to facilitate degradation, clearance and recycling of incoming cargo material delivered by increased rates of autophagy and macropinocytosis. Whether qualitative differences endow PDA lysosomes with unique structural and functional properties to cope with a higher demand for substrate clearance remains unknown. To answer this question, we have conducted the first comparative proteomics analysis of lysosomes isolated from PDA versus normal cells and have identified members of the Ferlin family of membrane repair factors, Myoferlin and Dysferlin, as selectively enriched on the membrane of PDA lysosomes. We propose that Ferlin proteins confer increased protection against lysosomal membrane stress in PDA cells. Ferlin proteins are normally localized on the plasma membrane of cell types subjected to heightened mechanical stress, such as skeletal muscle, where they facilitate repair of the lipid bilayer. Accordingly, mutations in DYSF are associated with two forms of muscular dystrophy whereby impaired membrane resealing compromises myoblast maturation, fusion and plasma membrane repair. Therefore, we hypothesize that PDA cells hijack and repurpose Ferlin proteins at the lysosome membrane to protect the integrity of this organelle. In support of this hypothesis, our preliminary findings show that PDA lysosomes are more resistant to acute chemically induced membrane permeabilization relative to normal cells. Mechanistically, lysosome localization of MYOF is necessary and sufficient for maintenance of lysosome quality control and its suppression leads to profound defects in lysosome morphology, PDA cell proliferation and in vivo tumor growth. The goal of this study is to investigate how MYOF functions to protect the lysosome membrane in mechanistic detail and to determine the impact of blocking lysosome quality control on cellular metabolism, pro-growth signaling and disease progression. In summary, our discovery and proposed studies will be the first to determine a novel function for Ferlin proteins at the lysosome membrane and provide insight into how enhanced lysosome quality control regulates cellular homeostasis and disease pathogenesis.
项目总结 溶酶体是大分子循环、代谢重联和促进生长的关键节点。 细胞中的信号。因此,溶酶体功能缺陷是退行性疾病和衰老的基础 溶酶体的过度激活与癌症有关。先前的研究表明,高度攻击性的 胰腺导管腺癌(PDA)细胞上调溶酶体的生物发生和活性促进 通过提高自噬和自噬速度运送的入境货物材料的降解、清关和回收 巨噬细胞增多症。质的差异是否赋予PDA溶酶体独特的结构和功能 对于衬底清晰度的更高要求,其性能尚不清楚。为了回答这个问题,我们 首次对从pda和正常细胞分离的溶酶体进行了比较蛋白质组学分析。 并已确定膜修复因子Ferlin家族的成员Myoferlin和deferlin为 选择性地富集在PDA溶酶体膜上。我们认为费林蛋白赋予 增强PDA细胞对溶酶体膜应激的保护作用。 Ferlin蛋白通常定位于细胞类型的质膜上 机械应力,如骨骼肌,在那里它们有助于脂质双层的修复。相应地,突变 在DYSF中,DYSF与两种形式的肌营养不良有关,膜重新封闭受损 影响成肌细胞成熟、融合和质膜修复。因此,我们假设掌上电脑 细胞劫持并重新利用溶酶体膜上的费林蛋白,以保护这个细胞器的完整性。在……里面 支持这一假设,我们的初步发现表明,PDA溶酶体对急性 化学诱导的相对正常细胞的膜通透性。从机制上讲,溶酶体定位 MYOF是维持溶酶体质量控制的必要条件和充分条件,其抑制导致 在溶酶体形态、PDA细胞增殖和体内肿瘤生长方面存在严重缺陷。这样做的目的是 研究的目的是研究MYOF如何从机械细节上保护溶酶体膜,并 确定阻断溶酶体质量控制对细胞代谢、促生长信号和 疾病的发展。总而言之,我们的发现和拟议的研究将是第一次确定一部小说 FERLIN蛋白在溶酶体膜上的功能,并提供了对如何提高溶酶体质量的洞察 CONTROL调节细胞内稳态和疾病的发病机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rushika Miriam Perera其他文献

Rushika Miriam Perera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rushika Miriam Perera', 18)}}的其他基金

Targeting the autophagy-lysosome system to block pancreatic cancer
靶向自噬溶酶体系统来阻止胰腺癌
  • 批准号:
    10212065
  • 财政年份:
    2021
  • 资助金额:
    $ 36.2万
  • 项目类别:
Targeting the autophagy-lysosome system to block pancreatic cancer
靶向自噬-溶酶体系统来阻止胰腺癌
  • 批准号:
    10358483
  • 财政年份:
    2021
  • 资助金额:
    $ 36.2万
  • 项目类别:
Targeting the autophagy-lysosome system to block pancreatic cancer
靶向自噬-溶酶体系统来阻止胰腺癌
  • 批准号:
    10590682
  • 财政年份:
    2021
  • 资助金额:
    $ 36.2万
  • 项目类别:
Dissecting new mechanisms of lysosome quality control in health and disease
剖析健康和疾病中溶酶体质量控制的新机制
  • 批准号:
    10594038
  • 财政年份:
    2021
  • 资助金额:
    $ 36.2万
  • 项目类别:
Dissecting new mechanisms of lysosome quality control in health and disease
剖析健康和疾病中溶酶体质量控制的新机制
  • 批准号:
    10186267
  • 财政年份:
    2021
  • 资助金额:
    $ 36.2万
  • 项目类别:
Identifying Molecular Drivers of Cellular Plasticity in Pancreatic Cancer
识别胰腺癌细胞可塑性的分子驱动因素
  • 批准号:
    10404053
  • 财政年份:
    2020
  • 资助金额:
    $ 36.2万
  • 项目类别:
Identifying Molecular Drivers of Cellular Plasticity in Pancreatic Cancer
识别胰腺癌细胞可塑性的分子驱动因素
  • 批准号:
    10626914
  • 财政年份:
    2020
  • 资助金额:
    $ 36.2万
  • 项目类别:
Identifying Molecular Drivers of Cellular Plasticity in Pancreatic Cancer
识别胰腺癌细胞可塑性的分子驱动因素
  • 批准号:
    10252885
  • 财政年份:
    2020
  • 资助金额:
    $ 36.2万
  • 项目类别:
Identifying Molecular Drivers of Cellular Plasticity in Pancreatic Cancer
识别胰腺癌细胞可塑性的分子驱动因素
  • 批准号:
    9974205
  • 财政年份:
    2020
  • 资助金额:
    $ 36.2万
  • 项目类别:

相似海外基金

Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
  • 批准号:
    23H01982
  • 财政年份:
    2023
  • 资助金额:
    $ 36.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 36.2万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
  • 批准号:
    10598276
  • 财政年份:
    2023
  • 资助金额:
    $ 36.2万
  • 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
  • 批准号:
    10682794
  • 财政年份:
    2023
  • 资助金额:
    $ 36.2万
  • 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233343
  • 财政年份:
    2023
  • 资助金额:
    $ 36.2万
  • 项目类别:
    Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233342
  • 财政年份:
    2023
  • 资助金额:
    $ 36.2万
  • 项目类别:
    Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
  • 批准号:
    479363
  • 财政年份:
    2023
  • 资助金额:
    $ 36.2万
  • 项目类别:
    Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
  • 批准号:
    10681989
  • 财政年份:
    2023
  • 资助金额:
    $ 36.2万
  • 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
  • 批准号:
    2237240
  • 财政年份:
    2023
  • 资助金额:
    $ 36.2万
  • 项目类别:
    Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
  • 批准号:
    2305592
  • 财政年份:
    2023
  • 资助金额:
    $ 36.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了