Layer-by-Layer Nano Matrix for Growth Plate Regeneration
用于生长板再生的层层纳米基质
基本信息
- 批准号:10373554
- 负责人:
- 金额:$ 17.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-17 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAnimal ModelArchitectureAutologousBehaviorBindingCXCL12 geneCartilageCellsChildChildhoodChondrocytesChondrogenesisClinicClinicalCollagen Type IColorDNADeformityDevelopmentDrug Delivery SystemsEnsureEpiphysial cartilageExcisionFatty acid glycerol estersFractureGoalsGrowthGrowth FactorGrowth and Development functionHealthHistologyHomingHypertrophyIn VitroInjectableInjuryKnowledgeLeadLengthLesionLifeLightLimb structureLocationMature BoneMeasurementMeasuresMediatingMesenchymal Stem CellsMicroscopyMissionMusNanotechnologyNanotubesNatural regenerationNatureOperative Surgical ProceduresOrganismOrthopedicsOsteogenesisOutcomePathway interactionsPatientsPeripheralProteinsPublic HealthPublishingReporterResearchShapesSignal TransductionSiteStructureSurgeonTestingTissue EngineeringTissuesTreatment outcomeUnited States National Institutes of HealthVascular blood supplyWorkbasebonebone marrow mesenchymal stem cellcartilage regenerationcartilaginouschemokinedensitydisabilityeffective therapyhealinghigh rewardhigh riskin vivo regenerationinjuredmatrilin 3minimally invasivenanoosteogenicpreventprogenitorrecruitrepairedscaffoldstem cell differentiationstem cell migrationsuccess
项目摘要
Abstract
Growth plate fracture in children represents a significant problem in clinics. Although only 15-30% of all
childhood fractures are growth plate fractures, because a growth plate determines the length and shape of a
mature bone, this type of fracture may result in severe growth abnormalities in patients. It is known that ~1.4%
of growth plate fractures result in some type of growth arrest, which can be angular deformities caused by
peripheral disturbances or longitudinal shortening when centrally located lesions occur. Growth plate fractures
that extend into the blood supply of the epiphysis enable the transport of bone marrow and mesenchymal stem
cells (MSCs) into the metaphyseal growth plate leading to the formation of a bony bridge and growth arrest.
Therefore, the key challenge to repairing a growth plate injury is how to mediate MSC differentiation spatially at
the injury site and restoring a growth and development that temporally matches the surrounding uninjured
cartilaginous growth plate. Currently, there is no clinically-approved tissue engineering therapy to treat growth
plate fractures. Surgery is the only available treatment, and is only offered after a bony bridge has formed. It
includes removing the bony bridge and inserting autologous fat or cartilage tissue into the empty space to
discourage bony bridge reformation. However, this surgical procedure is very invasive and has an
unsatisfactory success rate.
To overcome these limitations, the objective of this proposal is to develop an injectable nano-matrix to
place cartilage-regenerating factors directly into the fracture, with multiple functional layers to control the timing
of drug delivery. Our central hypothesis is that we can develop a layer-by-layer nano-matrix (LbL-NM) to
achieve spatially and temporally controlled SDF1 and TGF-β1 delivery for growth plate regeneration. The
rationale that underlies the proposal is that once this injectable LbL-NM is developed to spatially and
temporally mediate MSC differentiation in mice, it can be further developed as a minimally invasive and highly
effective tissue engineering approach to treat growth plate fracture in a larger animal model. We will test our
central hypothesis by pursuing two specific aims: 1) Develop an LbL-NM to spatially control the delivery of
TGF-β1 and SDF1 in vitro and evaluate its treatment outcomes for growth plate regeneration in vivo, and 2)
Develop an LbL-NM to control the duration of TGF-β1 supply in the LbL-NM in vitro and evaluate its treatment
outcomes for growth plate regeneration in vivo. With the completion of this study, we expect to realize an LbL-
NM to achieve spatially and temporally controlled TGF-β1 and SDF1 delivery to mediate MSC differentiation in
an injured growth plate. This outcome would have an important positive impact on developing the first tissue
engineering approach to growth plate healing.
摘要
儿童生长板骨折是临床上的一个重要问题。虽然只有15-30%的人
儿童骨折是生长板骨折,因为生长板决定了儿童骨折的长度和形状。
成熟骨,这种类型的骨折可能导致患者严重的生长异常。据了解,约1.4%
生长板骨折导致某种类型的生长停滞,这可能是由于
当发生位于中心的病变时,外周紊乱或纵向缩短。生长板骨折
延伸到骨骺的血液供应中,使骨髓和间充质干细胞能够运输,
细胞(MSC)进入干骺端生长板,导致骨桥形成和生长停滞。
因此,修复生长板损伤的关键挑战是如何在空间上介导MSC分化,
损伤部位,并恢复与周围未受伤部位暂时匹配的生长和发育
软骨生长板目前,还没有临床批准的组织工程疗法来治疗生长
钢板断裂。手术是唯一可用的治疗方法,只有在骨桥形成后才能提供。它
包括移除骨桥并将自体脂肪或软骨组织插入空的空间中,
不鼓励骨桥重建。然而,这种外科手术是非常侵入性的,
不满意的成功率。
为了克服这些局限性,本提案的目标是开发可注射的纳米基质,
将软骨再生因子直接置入骨折处,多个功能层控制时机
药物输送。我们的中心假设是,我们可以开发一种逐层纳米基质(LbL-NM),
实现用于生长板再生的空间和时间受控的SDF 1和TGF-β1递送。的
该提议的基本原理是,一旦这种可注射的LbL-NM被开发成在空间上和
在小鼠中暂时介导的MSC分化,其可以进一步发展为微创和高度分化的细胞因子。
有效的组织工程方法来治疗生长板骨折在更大的动物模型。我们将测试我们的
通过追求两个具体目标来实现中心假设:1)开发LbL-NM以空间控制
体外TGF-β1和SDF 1,并评估其在体内生长板再生的治疗结果,以及2)
开发LbL-NM以控制体外LbL-NM中TGF-β1供应的持续时间并评估其治疗
体内生长板再生的结果。随着这项研究的完成,我们预计将实现一个LBL-
NM实现空间和时间控制的TGF-β1和SDF 1递送以介导MSC分化,
受伤的生长板这一结果将对开发第一个组织产生重要的积极影响
生长板愈合的工程方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yupeng Chen其他文献
Yupeng Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yupeng Chen', 18)}}的其他基金
Layer-by-Layer Nano Matrix for Growth Plate Regeneration
用于生长板再生的层层纳米基质
- 批准号:
10649409 - 财政年份:2022
- 资助金额:
$ 17.85万 - 项目类别:
Developing Nanomaterial Platform for Intra-Cartilage Delivery of RNA Therapeutics against Joint Diseases
开发用于软骨内递送 RNA 治疗关节疾病的纳米材料平台
- 批准号:
10375219 - 财政年份:2019
- 资助金额:
$ 17.85万 - 项目类别:
Developing Nanomaterial Platform for Intra-Cartilage Delivery of RNA Therapeutics against Joint Diseases
开发用于软骨内递送 RNA 治疗关节疾病的纳米材料平台
- 批准号:
10152524 - 财政年份:2019
- 资助金额:
$ 17.85万 - 项目类别:
Developing Nanomaterial Platform for Intra-Cartilage Delivery of RNA Therapeutics against Joint Diseases
开发用于软骨内递送 RNA 治疗关节疾病的纳米材料平台
- 批准号:
10379302 - 财政年份:2019
- 资助金额:
$ 17.85万 - 项目类别:
Developing Nanomaterial Platform for Intra-Cartilage Delivery of RNA Therapeutics against Joint Diseases
开发用于软骨内递送 RNA 治疗关节疾病的纳米材料平台
- 批准号:
9367787 - 财政年份:2017
- 资助金额:
$ 17.85万 - 项目类别:
Growth Plate Cartilage Repair via Novel Matrilin3/Rosette Nanotube Hybrid Matrix
通过新型 Matrilin3/Rosette 纳米管混合基质修复生长板软骨
- 批准号:
9338126 - 财政年份:2016
- 资助金额:
$ 17.85万 - 项目类别:
Growth Plate Cartilage Repair via Novel Matrilin3/Rosette Nanotube Hybrid Matrix
通过新型 Matrilin3/Rosette 纳米管混合基质修复生长板软骨
- 批准号:
9038551 - 财政年份:2016
- 资助金额:
$ 17.85万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 17.85万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 17.85万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 17.85万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 17.85万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 17.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 17.85万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 17.85万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 17.85万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 17.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 17.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists