Radiation-induced vascular reprogramming in glioblastoma
放射诱导的胶质母细胞瘤血管重编程
基本信息
- 批准号:10375792
- 负责人:
- 金额:$ 49.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAnimal ModelAnimalsBlood VesselsBrain NeoplasmsCellsChemotherapy and/or radiationChromatinDataEP300 geneEndothelial CellsEndotheliumGlioblastomaGliomaGoalsGrowthHistone AcetylationHumanImmune systemImmunocompetentIn VitroLeadMediatingModelingMolecularNutrientOperative Surgical ProceduresOut-MigrationsOxygenPericytesPharmaceutical PreparationsPharmacologyPlayPrimary Brain NeoplasmsProcessProductionRadiationRadiation Dose UnitRadiation therapyRadiobiologyRecurrenceRecurrent tumorResistanceRoleSpecific qualifier valueSupporting CellTestingTherapeuticTumor BiologyTumor-DerivedXenograft ModelXenograft procedurebevacizumabchromatin modificationclinically relevantexperimental studyhistone modificationin vivoin vivo Modelloss of functionmouse modelneoplastic cellnovel therapeuticsradiation effecttemozolomidetherapeutic targettherapy resistanttranscription factortumortumor growthvirtual
项目摘要
Summary
Glioblastoma (GBM), the most common primary brain tumor is virtually always fatal. The primary modes of
therapy—surgery, radiation and chemotherapy with temozolomide—have led to only marginal improvements in
survival. A hallmark of GBM is their high vascularity. Blood vessels within GBM, consisting of mostly
endothelial cells and pericytes, not only play the important role of providing nutrients and oxygen to the tumor,
but also provide direct trophic support to the tumor cells and serve as conduits for migration out of the tumor.
However, anti-angiogenic therapies directed against tumor vasculature have not been successful. A number of
studies have revealed that tumor pericytes and endothelial cells can be derived directly from tumor cells,
although tumor-derived endothelial cells are relatively rare occurrences in untreated tumors. The number of
tumor-derived endothelial cells is greatly increased in recurrent tumors, suggesting that glioma therapy, such
as radiation, could influence this process. Our preliminary studies show that radiation can induce the
production of endothelial-like and pericyte-like cells in vitro and in animal models in vivo. These reprogrammed
cells are important for the growth of the tumor following radiation in vivo and we have begun to define what
factors the reprogrammed vascular cells produce to support the growth of the remaining tumor cells following
radiation. Our preliminary data indicate that radiation induces altered chromatin states that allow for
reprogramming to occur; a process that is potentially therapeutically targetable through the inhibition of the
histone acetyltransferase (HAT), P300. The goals of the current studies are to understand the process of
vascular reprogramming (RIR) and to determine how it influences brain tumor biology. Our hypothesis is that
vascular reprogrammed cells provide critical trophic support to the remaining tumor cells under the harsh
conditions that occur following radiation. First, in Aim 1 we will determine whether therapeutically relevant
doses of radiation promote vascular RIR. We will then use cell ablation strategies to validate our preliminary
data indicating that radiation-induced reprogramming is important for the subsequent growth of the tumor
following radiation treatment using both xenotransplantation and immunocompetent syngeneic mouse models.
Next, we will explore the mechanisms by which radiation reprogrammed endothelial-like and pericyte-like cells
promote the growth of the remaining tumor, determining what specific factors they elaborate, and whether
these factors are responsible for tumor survival and growth following radiation. We will then test the hypothesis
that radiation induces the formation of vascular-like cells through modification of chromatin accessibility via
augmentation of histone acetylation through the P300 histone acetyltransferase, allowing for access of
vascular-specifying transcription factors. Finally, we will use pharmacologic agents to therapeutically target the
process of RIR through inhibition of the P300 HAT. These experiments can lead to a new understanding of
mechanisms underlying resistance to radiation therapy and open the door to new treatments.
总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HARLEY IAN KORNBLUM其他文献
HARLEY IAN KORNBLUM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HARLEY IAN KORNBLUM', 18)}}的其他基金
Radiation-induced vascular reprogramming in glioblastoma
放射诱导的胶质母细胞瘤血管重编程
- 批准号:
10540761 - 财政年份:2021
- 资助金额:
$ 49.21万 - 项目类别:
UCLA IDDRC: Cells, Circuits and Systems Core
加州大学洛杉矶分校 IDDRC:细胞、电路和系统核心
- 批准号:
10686887 - 财政年份:2020
- 资助金额:
$ 49.21万 - 项目类别:
UCLA IDDRC: Cells, Circuits and Systems Core
加州大学洛杉矶分校 IDDRC:细胞、电路和系统核心
- 批准号:
10224912 - 财政年份:2020
- 资助金额:
$ 49.21万 - 项目类别:
UCLA IDDRC: Cells, Circuits and Systems Core
加州大学洛杉矶分校 IDDRC:细胞、电路和系统核心
- 批准号:
10426154 - 财政年份:2020
- 资助金额:
$ 49.21万 - 项目类别:
UCLA IDDRC: Cells, Circuits and Systems Core
加州大学洛杉矶分校 IDDRC:细胞、电路和系统核心
- 批准号:
10085984 - 财政年份:2020
- 资助金额:
$ 49.21万 - 项目类别:
Project 4: Novel epigenetic treatment of IDH mutant gliomas
项目4:IDH突变神经胶质瘤的新型表观遗传学治疗
- 批准号:
10225553 - 财政年份:2017
- 资助金额:
$ 49.21万 - 项目类别:
Project 4: Novel epigenetic treatment of IDH mutant gliomas
项目4:IDH突变神经胶质瘤的新型表观遗传学治疗
- 批准号:
9983050 - 财政年份:2017
- 资助金额:
$ 49.21万 - 项目类别:
Stem cell- based studies of gene-environment interactions in PTEN- associated autism
基于干细胞的 PTEN 相关自闭症基因-环境相互作用研究
- 批准号:
9133215 - 财政年份:2016
- 资助金额:
$ 49.21万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 49.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




