Ultra-fast imaging for the safe delivery of electron FLASH radiation therapy
用于安全实施电子闪光放射治疗的超快速成像
基本信息
- 批准号:10384307
- 负责人:
- 金额:$ 27.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdjuvantAlgorithmsAnatomyAnimalsClinicClinicalComputer softwareDataDepositionDetectionDevelopmentDevicesDoseDose-RateElectron BeamElectronsEngineeringFeedbackGoalsHumanImageLateralLinear Accelerator Radiotherapy SystemsLocationMeasurementMeasuresMedical centerMethodsModificationMonitorNoiseNormal tissue morphologyOperative Surgical ProceduresOutputPatientsPhasePhotonsPhysiologic pulsePublishingPulse RatesRadiationRadiation Dose UnitRadiation MonitoringRadiation ScatteringRadiation TherapistRadiation therapyRecording of previous eventsResearchResolutionResourcesRiskRunningSchoolsSeriesSignal TransductionSiteSourceSpeedSystemTechnologyTest ResultTestingTimeTissuesToxic effectUnited StatesValidationWaterWorkbasecancer therapychemotherapycherenkov imagingclinical applicationclinical centerclinical implementationconventional therapycurative treatmentsdesigndetection methoddigitaldosimetryimage guidedimage processingimaging systemimprovedirradiationmillisecondperformance testspreclinical studypreservationprogramsprototypequality assuranceradiation deliveryresearch and developmentresponsesensorsuccesstooltranslation to humanstransmission processtreatment planningtreatment sitetumor
项目摘要
Abstract
Radiation therapy is a supplementary curative treatment used adjuvant with most surgery and chemotherapy,
being delivered to nearly 1 out of every 4 people in their lifetime. While image guidance and conformal planning
reduced the dose to healthy tissue, there is still a substantial risk of tissue damage that sets the upper limit of
dose deposited to the tumor. A recent radical approach to minimize healthy tissue damage was demonstrated
with ultra-high dose rate irradiation, and is known as the FLASH effect. This treatment operates at dose rates
1000x higher than in conventional mode, and by delivering an entire treatment course in 100 millisecond, it
promises a reduction of radiation-induced toxicities by 10-50%. Several clinical centers, including Dartmouth
Hitchcock Clinic, demonstrated that an existing clinical linac can be reversibly converted into an ultra-high dose
rate electron source. This modification shows enormous translational potential to deliver electron FLASH
(eFLASH) in any radiotherapy center using existing systems. However, while most research in the field is focused
on elucidating the radiobiological mechanisms of FLASH, work towards mitigating the risks of FLASH is largely
untouched, yet will be pivotal for wide clinical implementation. New techniques for detection monitoring radiation
need to be developed due to the millisecond timescales at which FLASH operates which make traditional
methods unsuitable. In this project, we exploit the uniqueness of DoseOptics BeamSiteTM system, a recently
510(k) cleared single photon capable camera designed to monitor conventional radiotherapy providing the first
direct videos of the radiation dose delivery. BeamSite images are used by radiation therapists to monitor radiation
delivery real-time. Clinical use has shown that routine monitoring of radiotherapy can reveal sub-optimal delivery
which can be addressed by the therapists as needed. More importantly, it offers an automatic detection of beam
and patient misalignments and delivery errors, and therefore it is very scalable even to the ultra-fast FLASH
application. In this Phase I project we propose to develop an ultra-fast version of the BeamSite camera capable
of tracking the beam on patients at kiloframe/s frame rate, which is required to keep up with the standard 360
Hz beam pulse rate in order to provide critically needed beam location and a linear and scalable dosimetry at
these ultra-high dose rates. Once the camera is developed, these methods will be studied on DHMC’s existing
clinical dual-purpose FLASH linac. The current proposal provides resources for the goals of: (i) developing a
hardware prototype of an ultra-fast Cherenkov camera equipped with optimized, firmware-based algorithms, and
(ii) demonstrating its capabilities for detecting beam deviations and dose on an existing eFLASH linac. The work
includes hardware and software support and development, and eFLASH resources at Dartmouth Hitchcock to
be leveraged towards these goals.
摘要
放射治疗是一种辅助治疗,与大多数手术和化疗一起使用,
每四个人中就有一个在他们的一生中被传递。虽然图像引导和适形规划
减少对健康组织的剂量,仍然存在组织损伤的巨大风险,这设定了剂量的上限
剂量沉积到肿瘤。最近的一种激进的方法,以尽量减少健康组织的损害,
具有超高剂量率的辐照,被称为FLASH效应。这种治疗以剂量率进行
比传统模式高1000倍,并且通过在100毫秒内提供整个治疗过程,
承诺将辐射引起的毒性降低10- 50%。几个临床中心,包括达特茅斯
希区柯克诊所,证明现有的临床直线加速器可以可逆地转换成超高剂量
速率电子源这种修饰显示出巨大的翻译潜力,以提供电子闪光
(eFLASH)在任何放射治疗中心使用现有的系统。然而,尽管该领域的大多数研究都集中在
在阐明闪光的放射生物学机制方面,减轻闪光风险的工作主要是
未触及,但将是广泛的临床实施的关键。探测监测辐射的新技术
由于闪存的工作时间为毫秒级,这使得传统的
方法不合适。在这个项目中,我们利用了DoseOptics BeamSiteTM系统的独特性,
510(k)批准的单光子照相机,用于监测传统放射治疗,
放射剂量输送的直接视频。放射治疗师使用BeamSite图像来监测辐射
实时交付。临床使用表明,常规监测放射治疗可以揭示次优输送
这可以由治疗师根据需要解决。更重要的是,它提供了一个自动检测光束,
以及患者未对准和输送错误,因此,即使是超快闪存,也具有很强的可扩展性
应用程序.在这个第一阶段的项目中,我们建议开发一个超快版本的BeamSite相机,
以千帧/秒的帧速率跟踪患者的光束,这需要跟上标准的360
Hz射束脉冲速率,以提供急需的射束位置和线性和可扩展的剂量测定,
这些超高的剂量率一旦相机被开发出来,这些方法将在DHMC现有的
临床两用FLASH直线加速器。目前的建议为以下目标提供资源:㈠制定一个
配备优化的基于固件的算法的超快切伦科夫相机的硬件原型,以及
(ii)展示了其在现有eFLASH直线加速器上检测束流偏差和剂量的能力。工作
包括硬件和软件支持和开发,以及达特茅斯希区柯克的eFLASH资源,
为实现这些目标而努力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Petr Bruza其他文献
Petr Bruza的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Petr Bruza', 18)}}的其他基金
Ultra-fast imaging for the safe delivery of electron FLASH radiation therapy
用于安全实施电子闪光放射治疗的超快速成像
- 批准号:
10708158 - 财政年份:2021
- 资助金额:
$ 27.95万 - 项目类别:
Ultra-fast imaging for the safe delivery of electron FLASH radiation therapy
用于安全实施电子闪光放射治疗的超快速成像
- 批准号:
10603353 - 财政年份:2021
- 资助金额:
$ 27.95万 - 项目类别:
相似海外基金
Metachronous synergistic effects of preoperative viral therapy and postoperative adjuvant immunotherapy via long-term antitumor immunity
术前病毒治疗和术后辅助免疫治疗通过长期抗肿瘤免疫产生异时协同效应
- 批准号:
23K08213 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improving the therapeutic immunity of cancer vaccine with multi-adjuvant polymeric nanoparticles
多佐剂聚合物纳米粒子提高癌症疫苗的治疗免疫力
- 批准号:
2881726 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Studentship
Countering sympathetic vasoconstriction during skeletal muscle exercise as an adjuvant therapy for DMD
骨骼肌运动期间对抗交感血管收缩作为 DMD 的辅助治疗
- 批准号:
10735090 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Evaluation of the Sensitivity to Endocrine Therapy (SET ER/PR) Assay to predict benefit from extended duration of adjuvant endocrine therapy in the NSABP B-42 trial
NSABP B-42 试验中内分泌治疗敏感性 (SET ER/PR) 测定的评估,用于预测延长辅助内分泌治疗持续时间的益处
- 批准号:
10722146 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
DEVELOPMENT OF SAS A SYNTHETIC AS01-LIKE ADJUVANT SYSTEM FOR INFLUENZA VACCINES
流感疫苗类 AS01 合成佐剂系统 SAS 的开发
- 批准号:
10935776 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
DEVELOPMENT OF SMALL-MOLECULE DUAL ADJUVANT SYSTEM FOR INFLUENZA VIRUS VACCINE
流感病毒疫苗小分子双佐剂体系的研制
- 批准号:
10935796 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
A GLYCOLIPID ADJUVANT 7DW8-5 FOR MALARIA VACCINES
用于疟疾疫苗的糖脂佐剂 7DW8-5
- 批准号:
10935775 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Adjuvant Photodynamic Therapy to Reduce Bacterial Bioburden in High-Energy Contaminated Open Fractures
辅助光动力疗法可减少高能污染开放性骨折中的细菌生物负载
- 批准号:
10735964 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别:
Adjuvant strategies for universal and multiseasonal influenza vaccine candidates in the context of pre-existing immunity
在已有免疫力的情况下通用和多季节流感候选疫苗的辅助策略
- 批准号:
10649041 - 财政年份:2023
- 资助金额:
$ 27.95万 - 项目类别: