Establishing Glyoxalase 2 as a Viable Target for the Treatment of Disease [Equipment Supplement]
将乙二醛酶 2 确立为治疗疾病的可行靶点 [设备补充]
基本信息
- 批准号:10383972
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-10 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAntioxidantsAutoimmunityAwardBiologicalBiologyCRISPR/Cas technologyCarbonCell LineCell modelCellsCellular Metabolic ProcessChromatinCuesDiabetes MellitusDiseaseEquipmentGlobal ChangeGlutathioneGlycolysisGoalsHealthHistonesHomeostasisInflammatoryKnock-outLaboratoriesLactoylglutathione LyaseLysineMalignant NeoplasmsMetabolicMetabolic DiseasesMetabolismMethodsModificationOutputOxidation-ReductionOxidative StressPlant RootsPost-Translational Protein ProcessingProteinsProteomicsReaderReduced GlutathioneRegulationResearchRoleSamplingSepsisSignal TransductionSiteSite-Directed MutagenesisTherapeuticTranscriptional RegulationTreatment EfficacyXenograft Modelin vivonovelprogramsresponsesensortreatment strategy
项目摘要
PROJECT SUMMARY/ABSTRACT
The ability for cells to detect and respond to metabolic cues is critical to maintaining homeostasis, and
perturbations in the sensing mechanisms that respond to oscillations in metabolic flux are the root cause of many
diseases, including sepsis, autoimmunity, cancer, and diabetes. There is mounting evidence that protein post-
translational modifications (PTMs) are the critical sensors for these metabolic fluctuations and are often
dysregulated in disease. Currently, we have a fundamental gap in our understanding of the composition,
abundance, and enzymatic control of PTMs and how they are altered in disease.
My laboratory focuses on the identification and characterization of PTMs and how they are regulated in both
health and disease. To accomplish this goal, we have developed sensitive methods to identify and quantify global
changes in PTMs across a broad spectrum of biological samples. Using this approach, we have identified a
novel lysine PTM that is derived from a glycolytic by-product. These PTMs are elevated when glyoxalase 2
(GLO2) is inhibited, resulting in reduced glycolytic output and disrupted one-carbon metabolism. Our primary
goal is to establish the therapeutic efficacy of a GLO2 inhibition strategy for the treatment of metabolic disorders.
My research program is dedicated to understanding four fundamental questions: 1) How does GLO2 control
one-carbon metabolism and cellular redox? GLO2 knockout cells have reduced glutathione and increased
oxidative stress. We will quantify the role of GLO2 in the regulation of de novo glutathione synthesis. In addition,
the role of GLO2 in the regulation of antioxidant responses will be evaluated in a cellular model for oxidative
stress and inflammatory signaling. 2) How are LactoylLys modifications regulated? We will employ
quantitative proteomics using CRISPR-Cas9 knockout cell lines of candidate proteins to identify enzymatic
regulators of LactoylLys modifications in cells. 3) Is GLO2 a viable target for the treatment of glycolysis-
dependent disease states? A xenograft model will be employed using GLO2 knockout cell lines to quantify
proliferation and metabolic regulation in vivo. This will determine the therapeutic feasibility of targeting GLO2 for
the treatment of disease. 4) Are LactoylLys modifications functional histone marks? We have identified
histones as targets for modification by LactoylLys modifications in unstimulated cells. The presence of these
PTMs basally suggests a putative role in transcriptional regulation. We will use proteomics to identify site-specific
modifications and putative `reader' domains for LactoylLys modifications in cells.
Our primary goal is to establish the role of GLO2 and LactoylLys modifications in cell metabolism and chromatin
biology. This project will address a fundamental gap in our basic understanding of how cell metabolism is
regulated. Understanding how these PTMs regulate homeostasis is a critical first step to understanding their role
in disease. Due to the far-reaching implications of this project and the broad applications for the treatment of
highly glycolytic disease states, this research program is an ideal fit for the ESI MIRA Award.
项目概要/摘要
细胞检测和响应代谢信号的能力对于维持体内平衡至关重要,并且
响应代谢通量振荡的传感机制的扰动是许多问题的根本原因
疾病,包括败血症、自身免疫、癌症和糖尿病。越来越多的证据表明蛋白质后
翻译修饰 (PTM) 是这些代谢波动的关键传感器,通常
疾病中失调。目前,我们对构图的理解存在根本差距,
PTM 的丰度和酶促控制以及它们在疾病中如何改变。
我的实验室专注于 PTM 的识别和表征以及它们在这两个领域中的监管方式
健康和疾病。为了实现这一目标,我们开发了敏感的方法来识别和量化全球
广泛的生物样品中 PTM 的变化。使用这种方法,我们已经确定了
源自糖酵解副产物的新型赖氨酸 PTM。当乙二醛酶 2 存在时,这些 PTM 会升高
(GLO2) 受到抑制,导致糖酵解输出减少并扰乱一碳代谢。我们的小学
目标是确定 GLO2 抑制策略治疗代谢性疾病的疗效。
我的研究项目致力于理解四个基本问题:1)GLO2 如何控制
一碳代谢和细胞氧化还原? GLO2 敲除细胞减少了谷胱甘肽并增加了
氧化应激。我们将量化 GLO2 在谷胱甘肽从头合成调节中的作用。此外,
GLO2 在抗氧化反应调节中的作用将在氧化细胞模型中进行评估
压力和炎症信号。 2) LactoylLys 修饰是如何调节的?我们将聘用
使用候选蛋白质的 CRISPR-Cas9 敲除细胞系进行定量蛋白质组学鉴定酶
细胞中乳酰赖氨酸修饰的调节因子。 3) GLO2 是治疗糖酵解的可行靶标吗?
依赖性疾病状态?将使用 GLO2 敲除细胞系的异种移植模型来量化
体内增殖和代谢调节。这将确定靶向 GLO2 的治疗可行性
疾病的治疗。 4) LactoylLys 修饰是否具有功能性组蛋白标记?我们已经确定
组蛋白作为未刺激细胞中 LactoylLys 修饰的修饰目标。这些的存在
PTM 基本上表明在转录调控中具有推定的作用。我们将使用蛋白质组学来识别位点特异性
细胞中 LactoylLys 修饰的修饰和假定的“阅读器”域。
我们的主要目标是确定 GLO2 和 LactoylLys 修饰在细胞代谢和染色质中的作用
生物学。该项目将解决我们对细胞代谢如何进行基本理解的根本差距
受监管。了解这些 PTM 如何调节体内平衡是了解其作用的关键的第一步
在疾病中。由于该项目的深远影响和在治疗方面的广泛应用
高度糖酵解疾病表明,该研究项目非常适合获得 ESI MIRA 奖。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James J Galligan其他文献
352 - Mitochondrial Proteins Are Highly Adducted Targets of Endogenously Generated Lipid Electrophiles in LPS-Activated RAW264.7 Macrophages
- DOI:
10.1016/j.freeradbiomed.2014.10.548 - 发表时间:
2014-11-01 - 期刊:
- 影响因子:
- 作者:
William N Beavers;Kristie L Rose;James J Galligan;Keri A Tallman;Salisha S Hill;Stephen B Milne;David S Myers;Pavlina Ivanova;Xiaojing Wang;Bing Zhang;H Alex Brown;Ned A Porter;Lawrence J Marnett - 通讯作者:
Lawrence J Marnett
4-HNE Significantly Alters L-FABP Structural and Functional Dynamics
- DOI:
10.1016/j.freeradbiomed.2011.10.298 - 发表时间:
2011-11-01 - 期刊:
- 影响因子:
- 作者:
Rebecca L Smathers;Philip Reigan;Kristofer S Fritz;James J Galligan;Colin T Shearn;Dennis R Petersen - 通讯作者:
Dennis R Petersen
29 - Histones Are Major Targets for Modification by Glucose-Derived Methylglyoxal
- DOI:
10.1016/j.freeradbiomed.2015.10.066 - 发表时间:
2015-10-01 - 期刊:
- 影响因子:
- 作者:
James J Galligan;Michelle Mitchener;Tina Wang;Orrette Wauchope;Kristie Rose;David Spiegel;Lawrence Marnett - 通讯作者:
Lawrence Marnett
382 - Epigenetics and Oxidative Stress: Establishing a Link through Histone Adduction
- DOI:
10.1016/j.freeradbiomed.2014.10.062 - 发表时间:
2014-11-01 - 期刊:
- 影响因子:
- 作者:
James J Galligan;William N Beavers;Kristie Rose;Lawrence J Marnett - 通讯作者:
Lawrence J Marnett
Reactive Aldehyde 4-Hydroxynonenal Inhibits Mitochondrial Sirt3 Deacetylase Activity
- DOI:
10.1016/j.freeradbiomed.2010.10.221 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Kristofer S Fritz;James J Galligan;Rebecca L Smathers;James R Roede;Colin T Shearn;Philip Reigan;Dennis R Petersen - 通讯作者:
Dennis R Petersen
James J Galligan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James J Galligan', 18)}}的其他基金
Glyoxalase 1 and its Role in Metabolic Syndrome
乙二醛酶 1 及其在代谢综合征中的作用
- 批准号:
10656054 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Establishing Glyoxalase 2 as a Viable Target for the Treatment of Disease
将乙二醛酶 2 确立为治疗疾病的可行靶点
- 批准号:
10640181 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Establishing Glyoxalase 2 as a Viable Target for the Treatment of Disease
将乙二醛酶 2 确立为治疗疾病的可行靶点
- 批准号:
10415990 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Establishing Glyoxalase 2 as a Viable Target for the Treatment of Disease
将乙二醛酶 2 确立为治疗疾病的可行靶点
- 批准号:
10027084 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Establishing Glyoxalase 2 as a Viable Target for the Treatment of Disease
将乙二醛酶 2 确立为治疗疾病的可行靶点
- 批准号:
10210412 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Modification of PDI by 4-HNE and 4-ONE and its Role in Ethanol-Induced ER Stress
4-HNE 和 4-ONE 对 PDI 的修饰及其在乙醇诱导的 ER 应激中的作用
- 批准号:
8130540 - 财政年份:2010
- 资助金额:
$ 25万 - 项目类别:
Modification of PDI by 4-HNE and 4-ONE and its Role in Ethanol-Induced ER Stress
4-HNE 和 4-ONE 对 PDI 的修饰及其在乙醇诱导的 ER 应激中的作用
- 批准号:
7752658 - 财政年份:2009
- 资助金额:
$ 25万 - 项目类别:
相似海外基金
Enhancing gamete cryoprotective properties of graphene oxide by dual functionalization with antioxidants and non-penetrating cryoprotectant molecules
通过抗氧化剂和非渗透性冷冻保护剂分子的双重功能化增强氧化石墨烯的配子冷冻保护特性
- 批准号:
24K18002 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SBIR Phase I: Sustainable antioxidants for industrial process fluids
SBIR 第一阶段:工业过程流体的可持续抗氧化剂
- 批准号:
2222215 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Development of a new bone augmentation method that enables long-term survival and long-term functional expression of transplanted cells by antioxidants
开发一种新的骨增强方法,通过抗氧化剂使移植细胞能够长期存活和长期功能表达
- 批准号:
23K09272 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Invasive Probing Cellular Oxidative Stress and Antioxidants Therapeutic Effectiveness
非侵入性探测细胞氧化应激和抗氧化剂的治疗效果
- 批准号:
10652764 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Mitochondria-targeting Novel Cationic Hydrazone Antioxidants for the Treatment of Preeclampsia
线粒体靶向新型阳离子腙抗氧化剂用于治疗先兆子痫
- 批准号:
10730652 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Latent Antioxidants for Environmentally Responsible Polymer Formulations
用于环保聚合物配方的潜在抗氧化剂
- 批准号:
RGPIN-2018-04107 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Contribution of antioxidants to regeneration of rotator cuff insertion
抗氧化剂对肩袖插入再生的贡献
- 批准号:
22K16720 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of different doses of antioxidants(Vitamin E) intake on exercise induced oxidative stress, antioxidative capacity and chronic inflammation
不同剂量抗氧化剂(维生素E)摄入对运动引起的氧化应激、抗氧化能力和慢性炎症的影响
- 批准号:
22K11609 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Polyunsaturated fatty acid (PUFA), inflammation and antioxidants
多不饱和脂肪酸 (PUFA)、炎症和抗氧化剂
- 批准号:
RGPIN-2019-05674 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Suppressed methemoglobin formation of artificial red cell by liposomal antioxidants and its mechanism.
脂质体抗氧化剂抑制人工红细胞高铁血红蛋白形成及其机制
- 批准号:
22K12824 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)