NeuroVision™: A Smartphone Application for Neurology and Telemedicine
NeuroVision™:用于神经病学和远程医疗的智能手机应用程序
基本信息
- 批准号:10384252
- 负责人:
- 金额:$ 32.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdherenceAdoptedAlgorithmsArchitectureAreaBody partCOVID-19 pandemicCaregiver supportCaregiversCaringCellular PhoneClinicalComputer Vision SystemsComputer softwareDataDevelopmentDevicesEnsureEssential TremorEvaluationEvidence based practiceFaceFamily CaregiverFamily memberFeedbackFocus GroupsGaitGoldGuidelinesHealthcareHomeHuntington DiseaseIndividualInstructionInvoluntary MovementsJointsLaboratoriesLegal patentLower ExtremityMeasuresMechanicsMonitorMotionMotorMovementMovement DisordersMulti-site clinical studyMuscleNeurologicNeurological outcomeNeurologistNeurologyOutcomeOutcome MeasureParkinson DiseaseParticipantPatient CarePatientsPeriodicityPersonsPhasePopulations at RiskProceduresProcessProtocols documentationQuality of lifeReportingResolutionSamplingScheduleSecureServicesSpecialistSpeechStandardizationStrokeStructureSummary ReportsSymptomsSystemTechnologyTelemedicineTestingTherapeutic InterventionUnited States National Institutes of HealthUpper ExtremityVideo RecordingVideoconferencingVisionVisitVisualVulnerable PopulationsWorkbasebody positionclinical careclinical outcome measurescostdesigneHealthfollow-upkinematicsmedical specialtiesmobile applicationmotor disordermotor impairmentmotor symptomnervous system disordernew technologynovel strategiespandemic diseasepatient populationprototyperemote assessmentremote deliveryresearch clinical testingresponsesensorsensor technologysmartphone Applicationtelehealthusabilitywearable sensor technology
项目摘要
The transformative shift in healthcare to in-home telehealth services is projected to deliver long term benefits
beyond the COVID pandemic to vulnerable populations, and those underserved due to isolation from specialty
care centers. For the neurologist, however, the shift away from in-person care has disrupted the ability to
perform comprehensive motor assessments with current telehealth technologies. While video conferencing
platforms have enabled some neurological evaluations of speech, facial, and upper body symptoms, most
neurological disorders such as Parkinson’s disease (PD) require a comprehensive visual examination of different
movement tasks and motor symptoms that are all too easily obstructed by the narrow field-of-view and
constrained 2D visual display of standard telehealth video-conferencing interactions. To overcome these
limitations and offer quantitative outcomes, our team of computer vision experts is partnering with leading
neurologists to develop a remote means of recording and quantifying prescribed neurological motor assessment
tasks in the home using a smartphone (3D) depth-sensing camera to inform a subsequent telehealth visit with
video samples and corresponding numerical outcome metrics. While developments from our group and others
in the area of computer vision have used total body pose estimation algorithms and stationary 3D cameras to
measure joint mechanics, our pilot work demonstrates the feasibility of a new approach to derive neurological
outcomes of gait, transfer, and fine motor assessment tasks directly from depth data recorded from a
nonstationary (handheld) smartphone. In Phase I we will build upon this work to develop simultaneous
localization and mapping algorithms in Aim 1 to obtain outcome measures of motor impairment from n=10
participants with PD that achieve +/- 5% error with respect to gold-standard motion capture. Aim 2 will add
guided instructions, compliance feedback, and summary reports to the software. The resulting NeuroVision™
prototype will be clinically evaluated for usability and perceived value among n=5 independent neurologists
and n=10 of their patients with PD. Smartphone-based recordings will be acquired by the patient’s care assistant
or family member using the NeuroVision™ app in our laboratory. The resulting report will be provided to the
referring neurologist, to be used to inform a scheduled telehealth visit. Our milestones are to achieve favorable
Likert usability ratings (≥8/10) and high ratings of perceived clinical value and acceptance from the neurologists.
Focus groups involving the patient and caregiver will provide additional feedback for a designing a more
complete Phase II NeuroVision™ system that meets in-home use requirements, supports a broader range of
common neurological conditions, and provides a secure eHealth assessment report. The pre-commercial
prototype will be tested for usability and clinical value in informing telehealth follow-up visits to meet the needs
of a broader population of at-risk patients with PD, Essential Tremor, Stroke, and Huntington’s disease currently
in need of safe and reliable access to routine clinical care for health and quality of life.
预计医疗保健向家庭远程医疗服务的变革性转变将带来长期福利
超越了脆弱人群的共同大流行,以及由于专业隔离而乏味的人口
护理中心。然而,对于神经科医生而言,远离人工护理的转变已使能力
使用当前的远程医疗技术进行全面的运动评估。视频会议时
平台已经实现了对语音,面部和上身符号的一些神经学评估,大多数
诸如帕金森氏病(PD)之类的神经系统疾病需要对不同的视觉检查
运动任务和运动症状都被狭窄的视野和
限制了标准远程医疗视频会议交互的2D视觉显示。克服这些
限制并提供定量结果,我们的计算机视觉专家团队正在与领先
神经科医生开发一种记录和量化处方神经运动评估的远程方法
使用智能手机(3D)深度感应相机在家中的任务,以告知随后的远程医疗访问
视频样本和相应的数字结果指标。而我们小组和其他人的发展
在计算机视觉领域,总体姿势估计算法和固定的3D摄像机
测量联合力学,我们的飞行员工作证明了一种新方法的可行性
直接从一个记录的深度数据中,步态,转移和精细运动评估任务的结果
非机构(手持)智能手机。在第一阶段,我们将基于这项工作以同时发展
AIM 1中的定位和映射算法,以获得n = 10的运动障碍的结果度量
与金标准运动捕获相对于+/- 5%误差的PD参与者。 AIM 2会添加
指导说明,合规反馈和摘要向软件报告。由此产生的Neurovision™
原型将在临床上评估n = 5个独立神经科医生之间的可用性和可感知价值
n = 10患者患有PD。基于智能手机的录音将由患者的护理助手获取
或家庭成员在我们的实验室使用Neurovision™应用程序。结果报告将提供给
引用神经科医生,用于通知预定的远程医疗访问。我们的里程碑是要实现有利的
LIKERT可用性评级(≥8/10)和神经科医生感知到的临床价值和接受程度的高等级。
涉及患者和护理人员的焦点小组将为设计更多的反馈
完整的II阶段Neurovision™系统,满足在家使用要求,支持更广泛的范围
常见的神经系统疾病,并提供了安全的eHealth评估报告。商业前
原型将测试可用性和临床价值,以告知远程医疗后续访问以满足需求
目前,PD的高风险患者目前有更广泛的PD患者,目前
需要安全可靠地获得日常临床护理,以实现健康和生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bhawna Shiwani其他文献
Bhawna Shiwani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bhawna Shiwani', 18)}}的其他基金
NeuroVision™: A Smartphone Application for Neurology and Telemedicine
NeuroVision™:用于神经病学和远程医疗的智能手机应用程序
- 批准号:
10663164 - 财政年份:2022
- 资助金额:
$ 32.09万 - 项目类别:
Augmented Reality Platform for Telehealth Rehabilitation
用于远程医疗康复的增强现实平台
- 批准号:
10698523 - 财政年份:2021
- 资助金额:
$ 32.09万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 32.09万 - 项目类别:
Addressing the “Readiness Gap:” An eHealth Intervention to Increase Patient Motivation for Evidence-Based Chronic Pain Interventions and Reduced Opioid Reliance
解决“准备差距”:电子健康干预措施可提高患者对循证慢性疼痛干预措施的积极性并减少阿片类药物的依赖
- 批准号:
10724026 - 财政年份:2023
- 资助金额:
$ 32.09万 - 项目类别:
A facial expression-based personalization engine (FPE) for monitoring and modulating real-time effective engagement in cognitive training in older adults at risk for AD/ADRD
基于面部表情的个性化引擎 (FPE),用于监控和调节有 AD/ADRD 风险的老年人实时有效地参与认知训练
- 批准号:
10766409 - 财政年份:2023
- 资助金额:
$ 32.09万 - 项目类别:
Exoskeleton Research: Myoelectric orthosis for rehab of severe chronic arm motor deficits
外骨骼研究:用于严重慢性手臂运动缺陷康复的肌电矫形器
- 批准号:
10420277 - 财政年份:2022
- 资助金额:
$ 32.09万 - 项目类别: