Computational algorithm to predict interacting MHC alleles from TCR sequences
从 TCR 序列预测相互作用的 MHC 等位基因的计算算法
基本信息
- 批准号:10384615
- 负责人:
- 金额:$ 25.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-10 至 2023-02-09
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAllelesAnkylosing spondylitisAntigen TargetingAntigensAutoimmune DiseasesBiological AssayBiological SciencesCancer PatientCell TherapyCell surfaceComplexComputational algorithmDataData SetDiseaseFrequenciesGoalsGrantHumanImmune responseIndividualInterest GroupLibrariesMajor Histocompatibility ComplexMalignant NeoplasmsMeasuresOutputPatientsPerformancePhasePlayPopulationProbabilityProcessResearchResearch PersonnelResistanceRoleRunningServicesSpecificitySpeedStainsStructureT cell therapyT-Cell ReceptorT-LymphocyteTestingTherapeuticTimeTrainingTumor TissueValidationWorkYeastsantigen bindingbaseclinically relevantcomplex datacomputerized toolscostengineered T cellsexperimental studyhuman dataimprovedinterestmachine learning algorithmnovel therapeuticsprediction algorithmprototypescreeningtool
项目摘要
Abstract
Major histocompatibility complexes (MHC) guide immune response by presenting antigen
fragments on a cell’s surface and interacting with T-cell receptors (TCRs). In recent years, many
T-cell therapies have successfully engineered T-cells to target MHC-antigen complexes
associated with cancers and other diseases. However, most T-cell therapies require identifying
a TCR that interacts with an MHC-antigen complex of interest, a slow and expensive search
process. Our proposal aims to speed up this search process through a computational algorithm
that will predict whether a TCR will interact with an MHC allele of interest. Current screening
assays for low frequency TCRs have high false positive rates. Researchers can use our tool to
computationally filter TCR candidates for interaction with a specific MHC allele before running
expensive validation experiments. In this proposal, we will first validate our approach through a
prototype algorithm that we will train on public TCR-MHC interaction data. We will then conduct
new tetramer staining experiments that address two major challenges for developing an
algorithm across multiple MHC alleles: the lack of interaction data for alleles other than A*02,
and the limited antigen diversity in existing public data. These experiments will provide
TCR-MHC data across 800 antigens for four common MHC alleles: A*01:01, A*02:01, A*11:01,
and B*07:02. Finally, we will construct and validate computational algorithms for each MHC
allele and evaluate the importance of various TCR components (e.g., alpha or beta chan,
CDR3) in predicting TCR-MHC interaction. Our work will result in the first computational tool to
help T-cell therapy developers filter TCR candidates based on MHC specificity. Beyond cell
therapies, this tool will also help researchers track T-cells in diseases where MHC alleles play a
major role.
摘要
主要组织相容性复合物(MHC)通过呈递抗原来引导免疫应答
细胞表面上的片段并与T细胞受体(TCR)相互作用。近年来不少
T细胞疗法已经成功地将T细胞工程化以靶向MHC-抗原复合物
与癌症和其他疾病有关。然而,大多数T细胞疗法需要识别
与感兴趣的MHC-抗原复合物相互作用的TCR,
过程我们的提议旨在通过一种计算算法来加快这一搜索过程
这将预测TCR是否会与感兴趣的MHC等位基因相互作用。目前的筛选
低频率TCR的测定具有高的假阳性率。研究人员可以使用我们的工具,
在运行前计算过滤TCR候选者与特定MHC等位基因的相互作用
昂贵的验证实验。在本提案中,我们将首先通过
我们将在公共TCR-MHC相互作用数据上训练原型算法。然后我们将进行
新的四聚体染色实验,解决了两个主要挑战,为发展一个
跨多个MHC等位基因的算法:缺乏除A*02以外的等位基因的相互作用数据,
以及现有公共数据中有限的抗原多样性。这些实验将提供
四种常见MHC等位基因的800种抗原的TCR-MHC数据:A*01:01,A*02:01,A*11:01,
和B*07:02。最后,我们将为每个MHC构建和验证计算算法
等位基因并评估各种TCR组分的重要性(例如,α或β通道,
CDR 3)在预测TCR-MHC相互作用中的作用。我们的工作将产生第一个计算工具,
帮助T细胞治疗开发人员根据MHC特异性筛选TCR候选者。超越细胞
该工具还将帮助研究人员在MHC等位基因发挥作用的疾病中跟踪T细胞。
主要角色。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Binbin Chen其他文献
Binbin Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Continuing Grant














{{item.name}}会员




