Urine TB diagnostic by amplicon reconstruction for PCR detection of DNA fragments

通过扩增子重建进行 DNA 片段 PCR 检测诊断尿结核

基本信息

  • 批准号:
    10385847
  • 负责人:
  • 金额:
    $ 19.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-06 至 2024-03-31
  • 项目状态:
    已结题

项目摘要

Globally, there are an estimated 10 million cases of tuberculosis (TB) each year, resulting in 1.6 million deaths. TB is the leading cause of death from a single infectious agent worldwide. TB is highly infectious and The Global Plan to Stop TB states that “… without new medicines, diagnostics and effective vaccines, we will not achieve the steep reductions in incidence and mortality that we need…” Of the 1.6 million deaths, 300,000 were HIV-infected individuals, a population where current diagnostics often fail. TB diagnostics utilized in developing countries, where TB is most prevalent, depend on clinical screening algorithms and sputum microscopy which are limited by low sensitivity and specificity. TB detection remains a significant diagnostic challenge. Current diagnostic methods are most often based on detection of biomarkers in a sputum sample which is difficult to obtain in children and HIV-infected individuals. The much more easily obtained urine sample has been suggested as an alternative patient sample for diagnosis. A urine lateral flow test for TB is available based on the TB surface biomarker LAM, but it has low sensitivity. PCR-based approaches, which potentially are much more sensitive and specific, have been proposed for detecting nucleic acid biomarkers in urine but remain controversial. A particular challenge for TB DNA biomarker testing in urine is DNA degradation into fragments small enough to pass through the kidney into the urine. The characteristics of fragmentation in urine presents three main challenges: 1) fragments are present in very low concentrations, 2) fragments present are too short for extraction by available methods, and 3) fragments of biomarkers are too short for amplification by traditional PCR methods. We describe innovative methods to overcome these challenges to 1) achieve efficient extraction and concentration of fragmented IS6110 from large volumes of urine using high gradient magnetic separation, and 2) a method of achieving amplicon reconstruction from short IS6110 fragment to make full-length IS6110 amplicons and enable PCR detection. Limited, but promising, preliminary data suggest this approach can be applied to existing PCR reactions for the TB biomarker IS6110. Aim 1 studies are proposed to characterize the fragment extraction and concentration approach. Aim 2 examines how the amplicon reconstruction approach performs and how this method can be extended to identify drug resistance. This proposal aims to develop these two technologies before testing these designs in prospective patient samples in a subsequent R01 with our collaborators in South Africa.
在全球范围内,每年估计有1 000万例结核病病例,造成160万人死亡。结核病是全球单一传染性病原体导致死亡的主要原因。结核病具有高度传染性,《全球遏制结核病计划》指出,“.如果没有新的药物、诊断方法和有效的疫苗,我们将无法实现我们所需要的发病率和死亡率的急剧下降.”在160万例死亡中,有30万人是艾滋病毒感染者,而目前的诊断方法往往无法对这一人群进行诊断。在结核病最流行的发展中国家,结核病诊断依赖于临床筛查算法和痰液显微镜检查,这受到灵敏度和特异性低的限制。结核病检测仍然是一个重大的诊断挑战。目前的诊断方法通常基于痰液样本中的生物标志物检测,这在儿童和HIV感染者中很难获得。更容易获得的尿液样本已被建议作为诊断的替代患者样本。基于TB表面生物标志物LAM,可进行TB的尿液侧流试验,但其灵敏度较低。基于PCR的方法,这可能是更敏感和特异性,已被提出用于检测尿液中的核酸生物标志物,但仍存在争议。尿液中TB DNA生物标志物检测的一个特殊挑战是DNA降解成足够小的片段,以通过肾脏进入尿液。尿液中片段化的特征提出了三个主要挑战:1)片段以非常低的浓度存在,2)存在的片段太短而无法通过可用方法提取,以及3)生物标志物的片段太短而无法通过传统PCR方法扩增。我们描述了克服这些挑战的创新方法,以1)使用高梯度磁分离实现从大量尿液中有效提取和浓缩片段化的IS6110,以及2)实现从短IS6110片段重建扩增子以制备全长IS6110扩增子并实现PCR检测的方法。有限但有希望的初步数据表明,这种方法可以应用于TB生物标志物IS 6110的现有PCR反应。目的1研究提出了表征片段提取和浓缩方法。目的2检查扩增子重建方法如何执行以及如何将该方法扩展到鉴定耐药性。该提案旨在与我们在南非的合作者在随后的R01中在前瞻性患者样本中测试这些设计之前开发这两种技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frederick R Haselton其他文献

Frederick R Haselton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frederick R Haselton', 18)}}的其他基金

Point-of-Care RT-PCR System to Inform COVID-19 and Respiratory Illness Decisions
护理点 RT-PCR 系统可为 COVID-19 和呼吸道疾病决策提供信息
  • 批准号:
    10688237
  • 财政年份:
    2020
  • 资助金额:
    $ 19.43万
  • 项目类别:
Retinal Imaging of Prognostic Indicators of Atherosclerosis
动脉粥样硬化预后指标的视网膜成像
  • 批准号:
    7573116
  • 财政年份:
    2009
  • 资助金额:
    $ 19.43万
  • 项目类别:
Retinal Imaging of Prognostic Indicators of Atherosclerosis
动脉粥样硬化预后指标的视网膜成像
  • 批准号:
    7787531
  • 财政年份:
    2009
  • 资助金额:
    $ 19.43万
  • 项目类别:
Development of DNA Logic Operations for Viral Diagnostics
用于病毒诊断的 DNA 逻辑运算的开发
  • 批准号:
    7573152
  • 财政年份:
    2009
  • 资助金额:
    $ 19.43万
  • 项目类别:
Development of DNA Logic Operations for Viral Diagnostics
用于病毒诊断的 DNA 逻辑运算的开发
  • 批准号:
    7797468
  • 财政年份:
    2009
  • 资助金额:
    $ 19.43万
  • 项目类别:
Multi-spectral quantum dot-based retinal imaging of molecular expression in vivo
基于多光谱量子点的体内分子表达视网膜成像
  • 批准号:
    7351806
  • 财政年份:
    2007
  • 资助金额:
    $ 19.43万
  • 项目类别:
Multi-spectral quantum dot-based retinal imaging of molecular expression in vivo
基于多光谱量子点的体内分子表达视网膜成像
  • 批准号:
    7583895
  • 财政年份:
    2007
  • 资助金额:
    $ 19.43万
  • 项目类别:
Multi-spectral quantum dot-based retinal imaging of molecular expression in vivo
基于多光谱量子点的体内分子表达视网膜成像
  • 批准号:
    7192344
  • 财政年份:
    2007
  • 资助金额:
    $ 19.43万
  • 项目类别:
Lagrangian detection of biomolecular interactions
生物分子相互作用的拉格朗日检测
  • 批准号:
    6763620
  • 财政年份:
    2004
  • 资助金额:
    $ 19.43万
  • 项目类别:
Lagrangian detection of biomolecular interactions
生物分子相互作用的拉格朗日检测
  • 批准号:
    6869526
  • 财政年份:
    2004
  • 资助金额:
    $ 19.43万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.43万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了