New methods for computational modeling of RNA structures
RNA 结构计算建模的新方法
基本信息
- 批准号:10389936
- 负责人:
- 金额:$ 4.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:BenchmarkingBiochemicalBiological ProcessBiologyBiotechnologyCell physiologyChargeComputer ModelsComputing MethodologiesCryoelectron MicroscopyDataData AnalysesDatabasesDiseaseDrug InteractionsFDA approvedGene ExpressionGene Expression RegulationGoalsGrantHIVHepatitis C virusHybridsIonsKineticsKnowledgeMetal Ion BindingMetalsMethodsMicrobiologyModelingMolecularPhysicsPlayRNARNA ComputationsRoleScientistSiteStructureSystemTestingTherapeuticUnited States National Institutes of Healthbasecomputerized toolsdeep learningdesignexperimental studygene therapygenomic RNAnovelnovel strategiespolyanionprecision medicinepredictive modelingsimulationsuccesssynthetic biologytoolvirology
项目摘要
PROJECT SUMMARY
RNA molecules play fundamental roles in nearly all cellular processes at the level of gene expression and
regulation. Not surprisingly, emerging biomedical advances such as precision medicine and synthetic
biology, all point to RNA as the central regulators and information carriers. Recently, realizing the potential
of using RNA to intervene gene expression, scientists successfully developed Onpattro, the first FDA-
approved RNA-based therapy in August 2018.
Understanding RNA function and therapeutic applications requires knowledge about RNA structure.
Unfortunately, currently, the number of the known structures is a small fraction of what need to be
determined. This gap has to be closed by computational methods. Furthermore, an RNA molecule is a
highly charged polyanion and positive charges such as metal ions bind to an RNA and for an integral part
of an RNA structure. Where and how metal ions interact with an RNA can directly impact RNA structure
and function as well as RNA-drug interactions.
Continuously supported by NIH for over 15 years, we have developed systematic computational tools for
the predictions of RNA structures, folding stability, kinetics, and metal ion effects. These tools have led to
fruitful applications in virology, microbiology, gene therapy, RNA biotechnology, and various RNA-based
therapeutic de- signs. However, despite over decade of efforts, many critical issues in computational RNA
biology still remain: de novo prediction of non-Watson-Crick interactions, structure prediction for large
RNAs, effective incorporation of experimental data such as cryo-EM and NMR data into structure prediction,
and modeling of metal ion ef- fects. In this grant, after 15 years of developing an initio physics-based models,
we propose to target the above and other pressing issues using a fundamentally different approach by
systematically developing data-driven (such as deep-learning) or hybrid data-driven/physics-based
simulation methods. The new approaches are mo- tivated by the increasing amount of experimental data
and the pressing need to have more efficient and reliable computational tools for data interpretation,
especially for structure determination experiments. We will use ex- perimental database, such as RNA-
Puzzles database, PDB, EMDataBank, BMRB, for large-scale benchmark tests, and biochemical and NMR
data collected by our well-established collaborators for in-depth and interactive information about various
experiments such as HCV genomic RNAs and HIV PBS systems. Our goal, if success- fully accomplished,
will immediately impact experiments such as structure determination, including cryo-EM and NMR-based
structure determination, identification of metal ion sites, and rational design of RNA structures for
therapeutic applications.
项目摘要
RNA分子在几乎所有细胞过程中在基因表达水平上起着重要作用,
调控毫不奇怪,新兴的生物医学进步,如精准医学和合成
生物学,都指出RNA是中央调节器和信息载体。最近,意识到
利用RNA干预基因表达,科学家们成功地开发了Onpattro,第一个FDA-
2018年8月批准的基于RNA的治疗。
了解RNA的功能和治疗应用需要了解RNA的结构。
不幸的是,目前,已知结构的数量是需要的一小部分,
测定这个差距必须通过计算方法来弥补。此外,RNA分子是
高电荷聚阴离子和正电荷如金属离子与RNA结合并形成一个整体部分
一种RNA结构。金属离子在何处以及如何与RNA相互作用可以直接影响RNA结构
和功能以及RNA-药物相互作用。
在NIH超过15年的持续支持下,我们开发了系统的计算工具,
RNA结构、折叠稳定性、动力学和金属离子效应的预测。这些工具导致了
在病毒学、微生物学、基因治疗、RNA生物技术和各种基于RNA的
治疗设计。然而,尽管经过了十多年的努力,计算RNA中的许多关键问题仍然存在,
生物学仍然存在:从头预测非沃森-克里克相互作用,结构预测大
RNA,有效地将实验数据,如冷冻EM和NMR数据纳入结构预测,
以及金属离子效应的建模。在这项资助中,经过15年的开发,
我们建议以一个完全不同的方法,针对上述及其他迫切的问题,
系统地开发数据驱动(如深度学习)或混合数据驱动/基于物理
模拟方法实验数据量的增加推动了新方法的发展
以及迫切需要更有效和可靠的数据解释计算工具,
特别是用于结构测定实验。我们将使用实验数据库,如RNA-
Puzzles数据库、PDB、EMDataBank、BMRB,用于大规模基准测试、生化和NMR
我们的合作伙伴收集的数据,用于深入和互动的信息,
实验,如HCV基因组RNA和HIV PBS系统。我们的目标,如果成功-完全实现,
将立即影响结构测定等实验,包括基于cryo-EM和NMR的
结构测定,金属离子位点的鉴定,以及RNA结构的合理设计,
治疗应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHI-JIE CHEN其他文献
SHI-JIE CHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHI-JIE CHEN', 18)}}的其他基金
New methods for computational modeling of RNA structures
RNA 结构计算建模的新方法
- 批准号:
10589857 - 财政年份:2020
- 资助金额:
$ 4.98万 - 项目类别:
New methods for computational modeling of RNA structures
RNA 结构计算建模的新方法
- 批准号:
10388284 - 财政年份:2020
- 资助金额:
$ 4.98万 - 项目类别:
New computational tools for predicting ion effects in RNA structures
用于预测 RNA 结构中离子效应的新计算工具
- 批准号:
9237041 - 财政年份:2017
- 资助金额:
$ 4.98万 - 项目类别:
相似海外基金
CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
- 批准号:
2339759 - 财政年份:2024
- 资助金额:
$ 4.98万 - 项目类别:
Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
- 批准号:
479334 - 财政年份:2023
- 资助金额:
$ 4.98万 - 项目类别:
Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
- 批准号:
23H02481 - 财政年份:2023
- 资助金额:
$ 4.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
- 批准号:
2320160 - 财政年份:2023
- 资助金额:
$ 4.98万 - 项目类别:
Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
- 批准号:
10637251 - 财政年份:2023
- 资助金额:
$ 4.98万 - 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
- 批准号:
10604822 - 财政年份:2023
- 资助金额:
$ 4.98万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 4.98万 - 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
- 批准号:
10655891 - 财政年份:2023
- 资助金额:
$ 4.98万 - 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
- 批准号:
10621634 - 财政年份:2023
- 资助金额:
$ 4.98万 - 项目类别:
Examination of risk assessment and biochemical assessment of fracture development focusing on the body composition of patients with rheumatoid arthritis
关注类风湿性关节炎患者身体成分的骨折发生风险评估和生化评估检查
- 批准号:
22KJ2600 - 财政年份:2023
- 资助金额:
$ 4.98万 - 项目类别:
Grant-in-Aid for JSPS Fellows