Evaluation of artificial intelligence-controlled CPR to improve vital organ perfusion and survival during prolonged resuscitation
评估人工智能控制的心肺复苏在长时间复苏期间改善重要器官灌注和生存的效果
基本信息
- 批准号:10392491
- 负责人:
- 金额:$ 58.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAlgorithmsAmerican Heart AssociationAnimal ExperimentsApplications GrantsArtificial IntelligenceBasic ScienceBiofeedbackBlood CirculationBlood flowCarbon DioxideCardiacCardiopulmonary ResuscitationCerebrumCessation of lifeCharacteristicsChest wall structureChoices and ControlChronicClinicalClinical DataClinical TrialsCollaborationsCoronary ArteriosclerosisCoronary heart diseaseDataDatabasesDevice or Instrument DevelopmentDevicesE-learningEarly MobilizationsEvaluationFamily suidaeFeedbackFrequenciesFutureGaussian modelGenerationsGoalsHospitalsHourHumanKnowledgeLearningLightLinear RegressionsMachine LearningMeasurementMeasuresMechanicsMetabolicMethodsModelingNear-Infrared SpectroscopyNeurologicOrganOutcomeOxygenPatientsPerformancePerfusionPhase I Clinical TrialsPre-Clinical ModelProcessPublishingRecommendationResearchResuscitationShockSurvival RateSystemTechniquesTestingTimeTrainingUnited StatesValidationVentricular FibrillationVentricular Tachycardiaalgorithm trainingbaseclinically relevantcoronary perfusionexperienceexperimental studyhemodynamicsimprovedin vivoindexinginnovationmachine learning algorithmmachine learning prediction algorithmneural networkout-of-hospital cardiac arrestporcine modelpre-clinicalprediction algorithmpressureprospectivetime interval
项目摘要
Project Summary / Abstract
Almost 400,000 cases of out-of-hospital cardiac arrest (OHCA) occur each year in the United States. In
patients requiring cardiopulmonary resuscitation (CPR) for prolonged periods, current CPR methods are
unable to maintain adequate blood flow and oxygen delivery to the vital organs. Survival is <10% in patients
with shockable rhythms and ~0% in those with non-shockable rhythms. Current American Heart Association
(AHA) recommendations for CPR follow a “one-size-fits-all” paradigm. Our goal is to improve vital
organ perfusion during prolonged CPR by “personalizing” compression/decompression
therapy with a dynamic CPR method that changes compression characteristics over the course of
CPR after taking into account the temporal changes of chest wall compliance and hemodynamics in order to
increase the rate of neurologically intact survival after OHCA.
In this grant proposal, we are investigating the deployment of machine learning algorithms incorporated
into a mechanical CPR device to predict and optimize hemodynamics during CPR. We will use state-of-the-art
dynamical modeling in conjunction with closed-loop control algorithms to
individualize CPR characteristics and optimize temporal blood flow. Our preliminary results suggest that
deployment of machine learning prediction algorithms paired with control algorithms in a preclinical Ventricular
Fibrillation model can adapt compression and decompression depth in real time, resulting in increased vital
organ blood flow as compared to standard CPR techniques Based on these results, we hypothesize that
optimization of compression depth, decompression depth, duty cycle, and compression rate of CPR will lead
to better outcomes. Our proposed research will: 1) identify the most promising algorithm for the prediction of
CPR hemodynamics 2) identify the best control algorithm to pair with this prediction algorithm in terms of
optimizing CPR hemodynamics and return of spontaneous circulation 3) use the prediction and control pairing
to improve 48h neurologically intact survival in a porcine model of ventricular fibrillation, as compared to
standard CPR techniques. Throughout this process, we will identify non-invasive alternative measurements to
provide to the algorithms with the ultimate goal of proceeding with device development and human trials.
项目摘要/摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Demetris Yannopoulos其他文献
Demetris Yannopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Demetris Yannopoulos', 18)}}的其他基金
Left ventricular physiological effects of veno-arterial ECMO support during cardiogenic shock
心源性休克时静脉-动脉 ECMO 支持的左心室生理效应
- 批准号:
10518818 - 财政年份:2022
- 资助金额:
$ 58.17万 - 项目类别:
Left ventricular physiological effects of veno-arterial ECMO support during cardiogenic shock
心源性休克时静脉-动脉 ECMO 支持的左心室生理效应
- 批准号:
10668465 - 财政年份:2022
- 资助金额:
$ 58.17万 - 项目类别:
Evaluation of artificial intelligence-controlled CPR to improve vital organ perfusion and survival during prolonged resuscitation
评估人工智能控制的心肺复苏在长时间复苏期间改善重要器官灌注和生存的效果
- 批准号:
10186125 - 财政年份:2021
- 资助金额:
$ 58.17万 - 项目类别:
Evaluation of artificial intelligence-controlled CPR to improve vital organ perfusion and survival during prolonged resuscitation
评估人工智能控制的心肺复苏在长时间复苏期间改善重要器官灌注和生存的效果
- 批准号:
10591524 - 财政年份:2021
- 资助金额:
$ 58.17万 - 项目类别:
Reperfusion Injury Protection Strategies During Basic Life Support
基本生命支持期间的再灌注损伤保护策略
- 批准号:
8875751 - 财政年份:2013
- 资助金额:
$ 58.17万 - 项目类别:
Reperfusion Injury Protection Strategies During Basic Life Support
基本生命支持期间的再灌注损伤保护策略
- 批准号:
8737966 - 财政年份:2013
- 资助金额:
$ 58.17万 - 项目类别:
Sodium nitroprusside and mechanical CPR adjuncts for cardio-cerebral resuscitatio
硝普钠和机械心肺复苏辅助剂用于心脑复苏
- 批准号:
8306015 - 财政年份:2011
- 资助金额:
$ 58.17万 - 项目类别:
Sodium nitroprusside and mechanical CPR adjuncts for cardio-cerebral resuscitatio
硝普钠和机械心肺复苏辅助剂用于心脑复苏
- 批准号:
8153318 - 财政年份:2011
- 资助金额:
$ 58.17万 - 项目类别:
Sodium nitroprusside and mechanical CPR adjuncts for cardio-cerebral resuscitatio
硝普钠和机械心肺复苏辅助剂用于心脑复苏
- 批准号:
8676557 - 财政年份:2011
- 资助金额:
$ 58.17万 - 项目类别:
Sodium nitroprusside and mechanical CPR adjuncts for cardio-cerebral resuscitatio
硝普钠和机械心肺复苏辅助剂用于心脑复苏
- 批准号:
8472362 - 财政年份:2011
- 资助金额:
$ 58.17万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 58.17万 - 项目类别:
Research Grant














{{item.name}}会员




