Real-Time Quantitation of Transport Across Vascular-Tissue Interfaces in Organ-On-Chip Models Using In Situ Mass Spectrometry

使用原位质谱法实时定量器官芯片模型中跨血管组织界面的运输

基本信息

  • 批准号:
    10394501
  • 负责人:
  • 金额:
    $ 31.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Abstract Current in vitro platforms are poor predictors of the in vivo safety, efficacy and pharmacokinetics of therapeutics, owing to a significant difference in the test conditions compared to physiological conditions. Therefore, drug toxicity testing is routinely performed using animal models. However, animal testing is expensive and time consuming. In addition, ethical concerns about the use of animals are increasingly calling for reduction/replacement of animal tests. To overcome these challenges, physiologically relevant organ-on-chip assays have been developed. These assays mimic the dynamic interactions encountered during drug delivery and recapitulates physiological flow rates, vascular architecture and the 3D nature of tissue (liver, lung, kidney, etc.), thereby providing improved quantitative and predictive capabilities to guide the development of drugs via accurate toxicity analysis. However, one of the critical components lacking from current organ-on-chip assays is the real-time analysis of drug concentration at specified locations within the assay to determine drug toxicity at defined tissue sites. To address this need, we propose to integrate our microfluidics-based, organ-on-chip systems with on-chip mass spectrometry analysis to measure drug concentrations across a vascularized liver construct. The Phase I effort will focus on integration the microfluidic device with a novel mass spectrometry (MS) assay. This method enables online temporal and spatial chemical characterization of chemical constituents within microfluidic devices by MS for the first time. The ChemSitu approach enables the means to continuously sample and chemically characterize small volumes of liquid directly from a microfluidic device at any point along the construct in near real-time and without negatively altering the state of the microfluidic system. A multi-disciplinary team of scientists and engineers with expertise in microfluidics-based cell assays and instrumentation development has been assembled for successful completion of this project. By providing an accurate, quantitative and predictive model of and quantitation of physiological interactions, the developed platform promises to establish a new paradigm for in vitro assessment of the physiological response to therapeutics.
摘要 目前的体外平台不能很好地预测治疗剂的体内安全性、功效和药代动力学, 这是由于测试条件与生理条件相比存在显著差异。因此,药物 毒性测试通常使用动物模型进行。然而,动物试验是昂贵的, 消耗。此外,对使用动物的伦理问题越来越多地呼吁 减少/取代动物试验。为了克服这些挑战,生理相关的器官芯片 已经开发了测定。这些试验模拟了药物输送过程中遇到的动态相互作用 并概括生理流速、血管结构和组织(肝、肺、肾, 等等),从而提供改进的定量和预测能力, 准确的毒性分析。然而,目前的器官芯片检测缺乏的关键成分之一是 实时分析测定内指定位置的药物浓度,以确定药物毒性, 确定的组织部位。 为了满足这一需求,我们建议将基于微流体的芯片上器官系统与芯片上质量集成 通过光谱分析来测量血管化肝脏构建体中的药物浓度。第一阶段的努力 将专注于集成微流控装置与一种新的质谱(MS)分析。此方法使 通过MS对微流控装置内的化学成分进行在线时间和空间化学表征 第一次ChemSitu方法可实现连续采样和化学表征 - 在沿着所述构造的任何点处直接从微流体装置以近实时方式输送少量液体, 而不会负面地改变微流体系统的状态。一个多学科的科学家团队, 在基于微流体的细胞测定和仪器开发方面具有专业知识的工程师已经 为圆满完成这个项目而努力。通过提供一个准确的、定量的和预测性的模型, 和定量的生理相互作用,开发的平台有望建立一个新的范式 用于体外评估对治疗剂的生理反应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Carrie German其他文献

Carrie German的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Carrie German', 18)}}的其他基金

Understanding Mustard Vesicants Distribution and Toxicity in the Eye Using In Vivo and In Silico Models
使用体内和计算机模型了解芥末糜烂剂在眼中的分布和毒性
  • 批准号:
    10709188
  • 财政年份:
    2023
  • 资助金额:
    $ 31.42万
  • 项目类别:
A synergistic in vitro-in silico model of the placental barrier for predicting fetal exposure and toxicity of xenobiotic compounds
胎盘屏障的协同体外计算机模拟模型,用于预测胎儿的外源化合物暴露和毒性
  • 批准号:
    10698740
  • 财政年份:
    2023
  • 资助金额:
    $ 31.42万
  • 项目类别:
An in vitro model for screening penetration of ocular drug products
筛选眼科药品渗透的体外模型
  • 批准号:
    10546892
  • 财政年份:
    2022
  • 资助金额:
    $ 31.42万
  • 项目类别:
Computational Biology (Cobi) Tools as a Framework for Physiologically-Based Pharmacokinetic/Pharmacodynamic Model Extrapolation from Rabbit to Human for Ophthalmic Drug Products
计算生物学 (Cobi) 工具作为基于生理学的药代动力学/药效学模型外推从兔到人眼科药品的框架
  • 批准号:
    10166845
  • 财政年份:
    2020
  • 资助金额:
    $ 31.42万
  • 项目类别:
Computational Biology (Cobi) Tools as a Framework for Physiologically-Based Pharmacokinetic/Pharmacodynamic Model Extrapolation from Rabbit to Human for Ophthalmic Drug Products
计算生物学 (Cobi) 工具作为基于生理学的药代动力学/药效学模型外推从兔到人眼科药品的框架
  • 批准号:
    10461730
  • 财政年份:
    2020
  • 资助金额:
    $ 31.42万
  • 项目类别:
Computational Biology (Cobi) Tools as a Framework for Physiologically-Based Pharmacokinetic/Pharmacodynamic Model Extrapolation from Rabbit to Human for Ophthalmic Drug Products
计算生物学 (Cobi) 工具作为基于生理学的药代动力学/药效学模型外推从兔到人眼科药品的框架
  • 批准号:
    10116143
  • 财政年份:
    2020
  • 资助金额:
    $ 31.42万
  • 项目类别:

相似国自然基金

SirT1在Acetaminophen诱发的药物性肝损伤中的作用及机制
  • 批准号:
    81100281
  • 批准年份:
    2011
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Diverging roles of EGFR and MET in acetaminophen-induced acute liver injury
EGFR 和 MET 在对乙酰氨基酚诱导的急性肝损伤中的不同作用
  • 批准号:
    10633557
  • 财政年份:
    2023
  • 资助金额:
    $ 31.42万
  • 项目类别:
Neurodevelopmental Effect of Acetaminophen Exposures
对乙酰氨基酚暴露对神经发育的影响
  • 批准号:
    10736409
  • 财政年份:
    2023
  • 资助金额:
    $ 31.42万
  • 项目类别:
Mechanisms of organ dysfunction and recovery in the Acetaminophen and Ascorbate Trial in Sepsis
对乙酰氨基酚和抗坏血酸脓毒症试验中器官功能障碍和恢复的机制
  • 批准号:
    10502613
  • 财政年份:
    2022
  • 资助金额:
    $ 31.42万
  • 项目类别:
Mechanisms of organ dysfunction and recovery in the Acetaminophen and Ascorbate Trial in Sepsis
对乙酰氨基酚和抗坏血酸脓毒症试验中器官功能障碍和恢复的机制
  • 批准号:
    10644023
  • 财政年份:
    2022
  • 资助金额:
    $ 31.42万
  • 项目类别:
Maternal acetaminophen use and childhood cancer
母亲使用对乙酰氨基酚与儿童癌症
  • 批准号:
    10675108
  • 财政年份:
    2022
  • 资助金额:
    $ 31.42万
  • 项目类别:
Pulmonary implications of perinatal acetaminophen exposure
围产期对乙酰氨基酚暴露对肺部的影响
  • 批准号:
    10593099
  • 财政年份:
    2022
  • 资助金额:
    $ 31.42万
  • 项目类别:
Intravenous acetaminophen after cardiac surgery (IVACS)
心脏手术后静脉注射对乙酰氨基酚 (IVACS)
  • 批准号:
    462410
  • 财政年份:
    2022
  • 资助金额:
    $ 31.42万
  • 项目类别:
    Operating Grants
Pulmonary implications of perinatal acetaminophen exposure
围产期对乙酰氨基酚暴露对肺部的影响
  • 批准号:
    10755924
  • 财政年份:
    2022
  • 资助金额:
    $ 31.42万
  • 项目类别:
Effects of acetaminophen on prenatal brain development: an organoid model
对乙酰氨基酚对产前大脑发育的影响:类器官模型
  • 批准号:
    10684055
  • 财政年份:
    2022
  • 资助金额:
    $ 31.42万
  • 项目类别:
Effects of acetaminophen on prenatal brain development: an organoid model
对乙酰氨基酚对产前大脑发育的影响:类器官模型
  • 批准号:
    10510873
  • 财政年份:
    2022
  • 资助金额:
    $ 31.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了