Characterization of the function of gene body DNA methylation
基因体 DNA 甲基化功能的表征
基本信息
- 批准号:10394704
- 负责人:
- 金额:$ 6.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAlternative SplicingAnimalsArabidopsisBindingBinding ProteinsBiological AssayBiological ModelsCancerousCandidate Disease GeneCellsChIP-seqChromatinComplementary DNADNA MethylationDNA Polymerase IIDefectEpigenetic ProcessEukaryotaExonsGene ExpressionGenesGenetic TranscriptionGenomeGenomicsGoalsIntronsInvertebratesInvestigationLengthMalignant NeoplasmsMammalsMapsMediatingMethylationNucleosomesPatternPhenotypePlantsPositioning AttributePropertyRNARNA SplicingRegulationRegulator GenesRepressionRoleSeriesSpeedSystemTechniquesTestingTranscriptTranscription InitiationTranscription Initiation SiteUp-RegulationWorkbasecancer therapyclinical applicationepigenetic regulationexperimental studygene conservationgene functiongenome-wideglobal run on sequencingimprovedinsightnanoporepromotertooltranscriptome sequencing
项目摘要
Project Summary
DNA methylation is an epigenetic mark found in most eukaryotes. At transposons and promoters, DNA
methylation primarily acts as a repressive mark. However, DNA methylation is also commonly found over gene
bodies, a phenomenon called gene body methylation (GBM). GBM is not generally associated with repression
of marked genes; instead, GBM genes tend to be moderately expressed, longer, and more functionally
important than non-GBM genes. GBM is also highly conserved throughout the plant and animal kingdoms. The
widespread conservation of GBM in spite of the mutagenic properties of DNA methylation suggests that this
type of methylation is functionally important. Loss of GBM is also a hallmark of cancer, and may contribute to
the aberrant phenotypes seen in cancerous cells. Yet despite these observations, the function of GBM
remains a fundamental open question in epigenetics. Improving our understanding of the function of GBM will
not only advance our understanding of epigenetic regulation, but may also provide valuable insights that could
be used for clinical applications in cancer treatment.
There are currently three major hypothesized functions for GBM. The first hypothesis, originally proposed
based on the observation that DNA methylation is higher in exons than in introns, is that GBM modulates
splicing. Another hypothesis is that GBM is involved in regulating gene expression levels. Finally, a third
hypothesis proposes that GBM represses aberrant transcription initiation within gene bodies.
Until recently, GBM could not be directly perturbed without causing genome-wide changes in DNA
methylation, which limited the conclusions that could be drawn about its function. However, the Jacobsen lab
has now developed tools to perform targeted DNA methylation editing in Arabidopsis. This proposal aims to
use a careful series of experiments to test potential functions of GBM using these new editing tools alongside
genomics assays. Using Arabidopsis as a model system, each of the three hypothesized functions of GBM will
be systematically evaluated. Initial experiments will use genome-wide sequencing to identify candidate GBM
genes with altered expression, splicing, or cryptic transcription in two hypomethylated lines relative to wild-
type. These candidate GBM genes will then be demethylated in a wild-type background using targeted DNA
methylation editing, to confirm that loss of GBM is sufficient to cause the observed phenotype. If these
experiments reveal a role for GBM, potential mechanisms will also be dissected. One likely candidate for
mediating GBM-dependent regulation is MBD2, which specifically binds at GBM genes in wild-type.
Experiments will be performed to determine if loss of GBM disrupts MBD2 binding, and whether tethering
MBD2 at artificially demethylated GBM genes can restore a normal phenotype. Other potential effectors of
GBM-mediated regulation will also be explored. Taken together, these experiments will represent the most
thorough investigation of the function of GBM to date.
!
项目摘要
DNA甲基化是在大多数真核生物中发现的表观遗传标记。在转座子和启动子,DNA
甲基化主要作为抑制标记。然而,DNA甲基化在基因组中也很常见。
这是一种称为基因体甲基化(GBM)的现象。GBM通常与抑制无关
相反,GBM基因倾向于适度表达,更长,功能更强
比非GBM基因更重要。GBM在整个植物和动物界也是高度保守的。的
尽管DNA甲基化具有致突变性,但GBM的广泛保守性表明,
甲基化的类型在功能上是重要的。GBM的丧失也是癌症的标志,并且可能有助于
癌细胞中的异常表型。然而,尽管有这些观察结果,GBM的功能
仍然是表观遗传学中一个基本的未决问题。提高我们对GBM功能的理解,
这不仅可以促进我们对表观遗传调控的理解,还可以提供有价值的见解,
用于癌症治疗的临床应用。
目前有三个主要的假设功能GBM。最初提出的第一个假设
基于外显子中的DNA甲基化高于内含子的观察,GBM调节
拼接另一种假设是GBM参与调节基因表达水平。最后,第三个
GBM抑制基因体内异常转录起始的假说。
直到最近,GBM不能直接干扰而不引起DNA的全基因组变化
甲基化,这限制了关于其功能的结论。然而,雅各布森实验室
现在已经开发出在拟南芥中进行靶向DNA甲基化编辑的工具。这项建议旨在
我使用一系列仔细的实验来测试GBM的潜在功能,这些新的编辑工具以及
基因组学测定。使用拟南芥作为模型系统,GBM的三种假设功能中的每一种都将
进行系统评估。最初的实验将使用全基因组测序来识别候选GBM
与野生型相比,在两个低甲基化品系中具有改变的表达、剪接或隐蔽转录的基因,
类型.这些候选GBM基因将在野生型背景下使用靶向DNA去甲基化,
通过甲基化编辑,以确认GBM的损失足以引起观察到的表型。如果这些
实验揭示了GBM的作用,潜在的机制也将被剖析。一个可能的候选人,
介导GBM依赖性调节的是MBD2,其特异性结合野生型中的GBM基因。
将进行实验以确定GBM的损失是否破坏MBD2结合,以及是否存在束缚。
在人工去甲基化GBM基因上的MBD2可以恢复正常表型。其他潜在效应物
GBM介导的调节也将被探索。综合起来,这些实验将代表
迄今为止,对GBM功能的彻底调查。
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colette Lafontaine Picard其他文献
Colette Lafontaine Picard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Colette Lafontaine Picard', 18)}}的其他基金
Characterization of the function of gene body DNA methylation
基因体 DNA 甲基化功能的表征
- 批准号:
9910978 - 财政年份:2020
- 资助金额:
$ 6.98万 - 项目类别:
相似海外基金
Alternative splicing of Grin1 controls NMDA receptor function in physiological and disease processes
Grin1 的选择性剪接控制生理和疾病过程中的 NMDA 受体功能
- 批准号:
488788 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Operating Grants
Using proteogenomics to assess the functional impact of alternative splicing events in glioblastoma
使用蛋白质基因组学评估选择性剪接事件对胶质母细胞瘤的功能影响
- 批准号:
10577186 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Long Noncoding RNA H19 Mediating Alternative Splicing in ALD Pathogenesis
长非编码 RNA H19 介导 ALD 发病机制中的选择性剪接
- 批准号:
10717440 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
RBFOX2 deregulation promotes pancreatic cancer progression through alternative splicing
RBFOX2 失调通过选择性剪接促进胰腺癌进展
- 批准号:
10638347 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Alternative splicing regulation of CLTC in the heart
心脏中 CLTC 的选择性剪接调节
- 批准号:
10749474 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Nitric oxide as a novel regulator of alternative splicing
一氧化氮作为选择性剪接的新型调节剂
- 批准号:
10673458 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Alternative splicing as an evolutionary driver of phenotypic plasticity
选择性剪接作为表型可塑性的进化驱动力
- 批准号:
2884151 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Studentship
Rescuing SYNGAP1 haploinsufficiency by redirecting alternative splicing
通过重定向选择性剪接挽救 SYNGAP1 单倍体不足
- 批准号:
10660668 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
CAREER: Mechanotransduction, transcription, and alternative splicing in cell biology
职业:细胞生物学中的机械转导、转录和选择性剪接
- 批准号:
2239056 - 财政年份:2023
- 资助金额:
$ 6.98万 - 项目类别:
Continuing Grant
Investigating the role of alternative splicing in the islets of Langerhans in developing diabetes.
研究朗格汉斯岛中选择性剪接在糖尿病发生中的作用。
- 批准号:
468851650 - 财政年份:2022
- 资助金额:
$ 6.98万 - 项目类别:
Research Grants














{{item.name}}会员




