Quantitative Methods for Genetic Epidemiology
遗传流行病学的定量方法
基本信息
- 批准号:10396017
- 负责人:
- 金额:$ 39.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AreaAwardBiologicalBiological ProcessChromosome MappingClinicalClinical InvestigatorCollaborationsCommunitiesComplexComputer softwareComputing MethodologiesDataData SetDevelopmentDiseaseEpidemiologistEthnic groupEtiologyGeneticGenomicsGoalsHeart DiseasesHumanKnowledgeMalignant NeoplasmsMediationMethodsMolecularMultivariate AnalysisPublic HealthReduce health disparitiesResearchResearch PersonnelResourcesScienceSoftware ToolsSourceStatistical MethodsTechnologyVaccinationVisionanalytical methoddisorder riskepidemiology studyexperiencegenetic epidemiologygenetic variantgenomic datahealth datahuman diseaseimprovedinsightnovelpersonalized medicinephenotypic datapleiotropismpolygenic risk scoreresponsetraituser friendly software
项目摘要
Project Summary
The advancements of genomic technologies and assemblies of large disparate sets of biological and health
data have outpaced the ability to integrate these different sources of information. Powerful statistical methods
and software are needed to fill this gap in order to provide novel understandings of biological processes, as
well as provide better predictions of human diseases to achieve the vision of personalized medicine. The broad
goals of this project are to advance genetic epidemiology studies of human traits and diseases by expanding
our development of statistical analytic methods and software encompassing four main areas: 1) multivariate
methods to decipher genetic contributions; 2) statistical fine-mapping of genetic variants; 3) causal mediation
methods; 4) polygenic risk scores (PRS) for predicting disease. Although these areas might appear broad and
disparate, there is pressing need to build more integrative methods across these domains. For example,
because molecular pleiotropy is pervasive, multivariate analysis is essential to identify shared genetic factors
acting through common biological mechanisms of multiple traits, and when using PRS to predict disease,
complex traits are often better predicted when multivariate correlated traits are used. And, the methods used
for statistical fine-mapping, including use of annotation, are relevant for creating PRS to predict disease. Our
team, involving statistical geneticists, computational biologists, genetic epidemiologist and clinical
investigators, has decades of experience and will capitalize on the extensive resources and collaborations we
have developed. Our novel methods will be applied to a broad range of diseases, with ultimate aims to better
understand disease etiology and improved disease prediction across different ethnic groups to reduce health
disparities. User-friendly software will be distributed with open access to the scientific community. We will take
advantage of rapidly evolving technologies, biologic and computational insights from multiple fields, and
evolving public health and clinical unmet needs to inform our science.
项目摘要
基因组技术的进步和大规模不同生物和健康集合的组装
数据的发展速度超过了整合这些不同信息来源的能力。强大的统计方法
需要软件来填补这一空白,以提供对生物过程的新理解,
并提供更好的人类疾病预测,以实现个性化医疗的愿景。广大
该项目的目标是通过扩大人类特征和疾病的遗传流行病学研究,
我们的统计分析方法和软件的发展包括四个主要领域:1)多变量
解读遗传贡献的方法; 2)遗传变异的统计学精细作图; 3)因果中介
方法:4)多基因风险评分(PRS)预测疾病。虽然这些领域可能看起来很广泛,
由于这些领域各不相同,因此迫切需要在这些领域建立更加综合的方法。比如说,
因为分子多效性是普遍存在的,所以多变量分析对于确定共有的遗传因子是必不可少的
通过多种性状的共同生物学机制起作用,并且当使用PRS预测疾病时,
当使用多变量相关性状时,复杂性状通常被更好地预测。而且,所使用的方法
用于统计学精细映射,包括注释的使用,与创建PRS以预测疾病相关。我们
团队,包括统计遗传学家,计算生物学家,遗传流行病学家和临床
调查人员,拥有数十年的经验,并将利用我们广泛的资源和合作,
已经发展。我们的新方法将应用于广泛的疾病,最终目标是更好地
了解疾病的病因,改善对不同种族的疾病预测,
差距。方便用户的软件将向科学界开放。我们将采取
快速发展的技术优势,来自多个领域的生物和计算见解,以及
不断发展的公共卫生和临床未满足的需求为我们的科学提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel J. Schaid其他文献
Barrett's esophagus: A familial disorder?
- DOI:
10.1016/s0016-5085(00)82962-5 - 发表时间:
2000-04-01 - 期刊:
- 影响因子:
- 作者:
Yvonne Romero;Alan J. Cameron;Lawrence J. Burgart;Cynthia L. Hardtke;Daniel J. Schaid;Shannon K. McDonnell;Ijeoma Azodo;Giles R. Locke;Joseph A. Murray - 通讯作者:
Joseph A. Murray
Associations of Self-Reported Race, Social Determinants of Health, and Polygenic Risk With Coronary Heart Disease
自我报告的种族、健康的社会决定因素以及多基因风险与冠心病的关联
- DOI:
10.1016/j.jacc.2024.06.052 - 发表时间:
2024-11-26 - 期刊:
- 影响因子:22.300
- 作者:
Kristjan Norland;Daniel J. Schaid;Mohammadreza Naderian;Jie Na;Iftikhar J. Kullo - 通讯作者:
Iftikhar J. Kullo
Principles and methods for transferring polygenic risk scores across global populations
跨全球人群转移多基因风险评分的原理和方法
- DOI:
10.1038/s41576-023-00637-2 - 发表时间:
2023-08-24 - 期刊:
- 影响因子:52.000
- 作者:
Linda Kachuri;Nilanjan Chatterjee;Jibril Hirbo;Daniel J. Schaid;Iman Martin;Iftikhar J. Kullo;Eimear E. Kenny;Bogdan Pasaniuc;John S. Witte;Tian Ge - 通讯作者:
Tian Ge
Enhancing polygenic scores for cardiometabolic traits through tissue- and cell-type-specific functional annotations
通过组织和细胞类型特异性功能注释增强心脏代谢特征的多基因评分
- DOI:
10.1016/j.xhgg.2025.100427 - 发表时间:
2025-07-10 - 期刊:
- 影响因子:3.600
- 作者:
Kristjan Norland;Daniel J. Schaid;Iftikhar J. Kullo - 通讯作者:
Iftikhar J. Kullo
471: Effect of a Family History of Prostate Cancer on Outcome After Radical Retropubic Prostatectomy
- DOI:
10.1016/s0022-5347(18)37733-4 - 发表时间:
2004-04-01 - 期刊:
- 影响因子:
- 作者:
Gregory S. Schenk;Horst Zincke;Jeffrey M. Slezak;Erik J. Bergstralh;Daniel J. Schaid;Stephen N. Thibodeau;Michael L. Blute - 通讯作者:
Michael L. Blute
Daniel J. Schaid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel J. Schaid', 18)}}的其他基金
Quantitative methods for genetic linkage heterogeneity
遗传连锁异质性的定量方法
- 批准号:
7318339 - 财政年份:2004
- 资助金额:
$ 39.75万 - 项目类别:
Quantitative methods for genetic linkage heterogeneity
遗传连锁异质性的定量方法
- 批准号:
7007291 - 财政年份:2004
- 资助金额:
$ 39.75万 - 项目类别:
Quantitative methods for genetic linkage heterogeneity
遗传连锁异质性的定量方法
- 批准号:
6846048 - 财政年份:2004
- 资助金额:
$ 39.75万 - 项目类别:
Quantitative methods for genetic linkage heterogeneity
遗传连锁异质性的定量方法
- 批准号:
6731681 - 财政年份:2004
- 资助金额:
$ 39.75万 - 项目类别:
REGRESSION MODELS FOR LINKAGE:TRAITS, COVARIATES, HETEROGENEITY, INTERACTION
关联回归模型:特征、协变量、异质性、交互作用
- 批准号:
6977698 - 财政年份:2004
- 资助金额:
$ 39.75万 - 项目类别:
相似海外基金
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
- 批准号:
EP/Z532538/1 - 财政年份:2024
- 资助金额:
$ 39.75万 - 项目类别:
Research Grant
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
- 批准号:
2300445 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Standard Grant
Open Access Block Award 2023 - Marine Biological Association
2023 年开放获取区块奖 - 海洋生物学协会
- 批准号:
EP/Y530116/1 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Research Grant
Research Initiation Award: Environmental Factors Modulation of Structure-Function of Biological Systems
研究启动奖:环境因素对生物系统结构功能的调节
- 批准号:
2200650 - 财政年份:2022
- 资助金额:
$ 39.75万 - 项目类别:
Standard Grant
MRC Transition Support Award: Cell biological mechanisms underlying stem cell competition
MRC 过渡支持奖:干细胞竞争的细胞生物学机制
- 批准号:
MR/W029219/1 - 财政年份:2022
- 资助金额:
$ 39.75万 - 项目类别:
Fellowship
Open Access Block Award 2022 - Marine Biological Association
2022 年开放获取块奖 - 海洋生物学协会
- 批准号:
EP/X527415/1 - 财政年份:2022
- 资助金额:
$ 39.75万 - 项目类别:
Research Grant
Canada Partnering Award: Revealing the biological and molecular functions of organelle contacts in mammalian cells
加拿大合作奖:揭示哺乳动物细胞细胞器接触的生物学和分子功能
- 批准号:
BB/V018167/1 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别:
Research Grant
IGF::OT::IGF. QUANTIFICATION OF DRUGS OF ABUSE AND RELATED SUBSTANCES IN BIOLOGICAL SPECIMENS. BASE CONTRACT AWARD POP: MARCH 14, 2019 THROUGH MARCH 13, 2020. N01DA-19-8951.
IGF::OT::IGF。
- 批准号:
10591464 - 财政年份:2019
- 资助金额:
$ 39.75万 - 项目类别:
IGF::OT::IGF. QUANTIFICATION OF DRUGS OF ABUSE AND RELATED SUBSTANCES IN BIOLOGICAL SPECIMENS. BASE CONTRACT AWARD POP: MARCH 14, 2019 THROUGH MARCH 13, 2020. N01DA-19-8951.
IGF::OT::IGF。
- 批准号:
10044270 - 财政年份:2019
- 资助金额:
$ 39.75万 - 项目类别:
Catalyst Award: Integration of Biotechnology and Cyberinstruction in the Biological Sciences at Fort Valley State University
催化剂奖:福特谷州立大学生物科学领域生物技术与网络教学的整合
- 批准号:
1818695 - 财政年份:2018
- 资助金额:
$ 39.75万 - 项目类别:
Standard Grant