Detecting Medical Emergencies in Isolated Older Adults Living Alone in Rural Areas

检测农村地区独居老年人的医疗紧急情况

基本信息

  • 批准号:
    10400417
  • 负责人:
  • 金额:
    $ 26.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-18 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Abstract Isolated older persons living alone in a rural house are at risk of being in medical distress without help. A rural house can be isolated from neighbors who can easily check on their well-being. As these people become elderly, they can have a high preference to stay in their home as long they believe they can care for themselves. An elderly person alone and in distress can be in a life and death situation in an isolated rural home. In an isolated rural house, many days can pass before someone decides to drive to their location to check on the elderly person. This project develops a low-cost monitoring solution for isolated rural elderly to safely lead independent lives. The phase I SBIR project will develop a wireless indoor tracking system to detect a person's location through several walls of a typical rural house. There will be no cables to run or need to install a complex array of sensors through the house. The cost of installation inexpensive. The system will have battery backup and protocols to operate over long power outages. It will also have a cell phone backup communication option should phone lines be down. The system will identify motions of the elderly person 24 hours a day in the house. Machine Learning (ML) Algorithms can detect abnormalities from their daily routine. The product is intended to be an optional accessory to in-home alert systems in use today and work with multiple vendors of in-home alert systems. It will operate in parallel with wearable buttons to signal an alert. Once the system identifies a distress event has occurred it will activate the alert system the same way as a wearable button press. The same alert protocol would be followed. In these systems an operator would first try to talk to the person with a speaker phone of the vendors' in-home alert system. If they cannot communicate with the person, they start working through a call list of local people to check on the home. The phase I will develop and test the wireless indoor tracking system and the Machine Learning (ML) Algorithms.
摘要 独居农村的孤寡老人有可能在得不到帮助的情况下陷入医疗困境。一个农村 房子可以与邻居隔离,邻居可以很容易地检查他们健康。当这些人成为 老年人,他们可以有很高的偏好留在他们的家,只要他们认为他们可以照顾 自己一个孤苦的老人在偏远的农村, 回家在一个孤立的农村房子,许多天可以通过之前,有人决定开车到他们的位置, 看看老人家。该项目为孤立的农村老年人开发了一种低成本的监测解决方案, 安全地过独立的生活第一阶段SBIR项目将开发一个无线室内跟踪系统, 通过典型的农村房屋的几面墙来探测一个人的位置。将没有电缆运行或需要 在房子里安装一系列复杂的传感器安装成本低廉。系统将 具有电池备份和协议,可在长时间停电时运行。它也将有一个手机备份 通讯选项,如果电话线被关闭。系统将识别老年人24的运动 每天在房子里呆上几个小时。机器学习(ML)算法可以从日常生活中检测出异常。 该产品的目的是作为一个可选的配件,在家庭报警系统在使用的今天, 家庭警报系统的多个供应商。它将与可穿戴按钮并行操作,以发出警报信号。 一旦系统识别出发生了遇险事件,它将以与 可穿戴按钮按压。将遵循相同的警报协议。在这些系统中,操作员将首先尝试 用供应商的家用警报系统的扬声器电话与人交谈。如果他们无法沟通 与人,他们开始通过当地人的电话名单工作,以检查家庭。第一阶段将 开发和测试无线室内跟踪系统和机器学习算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

PAUL GIBSON其他文献

PAUL GIBSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('PAUL GIBSON', 18)}}的其他基金

Automated Contact Tracing for Large Business Using Indoor Location Technology
使用室内定位技术对大型企业进行自动联系人追踪
  • 批准号:
    10323871
  • 财政年份:
    2021
  • 资助金额:
    $ 26.03万
  • 项目类别:
Using Structured Light Sensing with Machine Learning to Detect Unwitnessed In-Home Falls
使用结构光传感和机器学习来检测无人目击的家庭跌倒
  • 批准号:
    10818017
  • 财政年份:
    2020
  • 资助金额:
    $ 26.03万
  • 项目类别:
Algorithms to Detect In-Home Falls of Elderly Using Structured Light Sensing
使用结构光传感检测老人家中跌倒的算法
  • 批准号:
    9902762
  • 财政年份:
    2020
  • 资助金额:
    $ 26.03万
  • 项目类别:
An Automated System to Locate Items Misplaced by Persons with Dementia in a Care Facility
用于定位护理机构中痴呆症患者丢失物品的自动化系统
  • 批准号:
    10019454
  • 财政年份:
    2019
  • 资助金额:
    $ 26.03万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 26.03万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 26.03万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 26.03万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 26.03万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 26.03万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 26.03万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 26.03万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 26.03万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 26.03万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 26.03万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了