CRCNS: Following the BOLD lightening at rest strikes the seizure onset zone!
CRCNS:静止时的大胆闪电袭击了癫痫发作区!
基本信息
- 批准号:10396686
- 负责人:
- 金额:$ 36.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsBiological MarkersBrainBrain regionChildClinicalClinical DataComputing MethodologiesCustomDataDiagnosisDiseaseElectroencephalographyEpilepsyEvaluationFunctional ImagingFunctional Magnetic Resonance ImagingHospitalsIntractable EpilepsyLocationMeasuresMethodsModalityModelingMonitorMorbidity - disease rateNetwork-basedOperative Surgical ProceduresOutcomePatientsPediatric HospitalsPharmaceutical PreparationsPharmacy facilityPredictive ValuePropertyResearchRestRiskSeizuresSocietiesSourceStatistical ModelsSystemTestingTimeTrainingbasecohortcosteffective therapyfunctional magnetic resonance imaging/electroencephalographyimprovedindexingmortalitymultimodalitynetwork modelsnovelnovel markerprecision medicinepreventsignal processingstudy populationsuccesssurgery outcometool
项目摘要
Epilepsy is a devastating disease affecting over 50 million people worldwide (WHO). About 30% of patients do
not respond positively to medication and are diagnosed as having drug resistant epilepsy (DRE). DRE causes
significant costs, morbidity, and mortality. The most effective treatment is to surgically remove the seizure onset
zone (SOZ), the region from which seizure activity is triggered. The localization of the SOZ is essential for
surgical success. Unfortunately, surgical success rates range from 30%-70% because there is no reliable
biomarker of the SOZ. We propose to develop a combined intracranial EEG-fMRI biomarker of the SOZ while
the patient is not seizing or at “rest”. One may ask, “how does one identify where seizures start in the brain
without ever observing a seizure, and if this is possible why have previous methods failed?” The fundamental
limitation of current computational approaches for both resting state fMRI (rs-fMRI) and intracranial EEG (rsiEEG)
SOZ localization lies in the fact that they compute static measures from observations produced by a
dynamic epileptic network. We believe that a computational method that can provide a characterization of how
the observations are dynamically generated in the first place, and how internal network properties can trigger
seizures or prevent seizures will be successful in SOZ localization. Therefore, we will construct dynamical
network models (DNMs) in this study. DNMs are generative models that capture how every network node
(location of centralized network signal processing and transfer) interacts with every other node dynamically.
DNMs uncover internal properties including bandwidth, stability, controllability, system gain, and most important
to this application - connectivity. We propose that when a patient is not having a seizure, it is because the SOZ
is being inhibited by neighboring nodes (brain regions). We thus will apply DNM algorithms in a novel manner to
identify two groups of network nodes from rs-fMRI and rs-iEEG: those that are continuously inhibiting a set of
their neighboring nodes (denoted as “sources”) and the inhibited nodes themselves (denoted as “sinks”). Thus,
in line with the most recent advancement in precision medicine, for each patient, we will build DNMs customized
to identify and quantify, via a score, key sources and sinks, optimized to localize the primary causative SOZ
nodes in the epileptogenic network and their connectivity properties. We will leverage functional imaging data
while patients are “at rest” in a study population of children with DRE who are undergoing epilepsy surgery
evaluation. Specifically, we will construct DNMs from rs-fMRI and rs-iEEG data and test our novel “source-sink”
hypothesis that may point to the SOZ when patients are not seizing. If successful, the proposed DNMs could
significantly increase surgical candidacy and improve surgical outcomes by increasing the yield of surgically
actionable results and precision of SOZ localization. Furthermore, by removing the need to capture seizures,
this novel dynamic network model-based SOZ localization biomarker may substantially reduce invasive
monitoring times, avoiding further risks to patients and reducing costs to hospitals.
癫痫是一种毁灭性的疾病,影响着全世界5000多万人(世卫组织)。大约30%的患者
对药物没有积极反应,被诊断为耐药性癫痫(DRE)。焚毁去除率原因
成本、发病率和死亡率。最有效的治疗方法是手术切除癫痫发作
区域(SOZ),即触发缉获活动的区域。SOZ的本地化至关重要,
手术成功不幸的是,手术成功率从30%-70%不等,因为没有可靠的
SOZ的生物标志物。我们建议开发一种联合的SOZ颅内EEG-fMRI生物标志物,
患者没有抽搐或处于“休息”状态。有人可能会问:“如何确定癫痫发作在大脑中的起始位置
而从来没有观察到癫痫发作,如果这是可能的,为什么以前的方法失败了?“根本
静息状态fMRI(rs-fMRI)和颅内EEG(rsiEEG)当前计算方法的局限性
SOZ局部化在于这样一个事实,即他们计算静态措施,从观测产生的一个
动态癫痫网络我们相信,一种计算方法,可以提供一个表征如何
首先,观察结果是动态生成的,内部网络属性如何触发
癫痫发作或预防癫痫发作将成功SOZ定位。因此,我们将构建动态
网络模型(DNMs)。DNM是生成模型,它捕捉每个网络节点如何
(集中式网络信号处理和传输的位置)与每个其它节点动态地交互。
DNM揭示了内部属性,包括带宽,稳定性,可控性,系统增益,以及最重要的
连接性。我们认为,当一个病人没有癫痫发作,这是因为SOZ
被邻近的节点(大脑区域)抑制。因此,我们将以一种新颖的方式应用DNM算法,
从rs-fMRI和rs-iEEG中识别两组网络节点:那些持续抑制一组
它们的相邻节点(表示为“源”)和被禁止节点本身(表示为“宿”)。因此,在本发明中,
根据精准医疗的最新进展,我们将为每位患者定制DNM
通过评分确定和量化关键源和汇,优化定位主要的SOZ成因
癫痫网络中的节点及其连通性。我们将利用功能成像数据
在接受癫痫手术的DRE儿童研究人群中,
评价具体来说,我们将从rs-fMRI和rs-iEEG数据构建DNM,并测试我们新的“源-汇”。
这一假设可能指向SOZ时,病人没有抽搐。如果成功,拟议的DNM可以
显著增加手术候选人,并通过增加手术的产量来改善手术结果
可操作的结果和SOZ定位的精度。此外,通过消除捕获缉获量的需要,
这种新的基于动态网络模型的SOZ定位生物标志物可以大大减少侵入性
监测时间,避免对患者的进一步风险,并降低医院的成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Varina Boerwinkle其他文献
Varina Boerwinkle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Varina Boerwinkle', 18)}}的其他基金
CRCNS: Following the BOLD lightening at rest strikes the seizure onset zone!
CRCNS:静止时的大胆闪电袭击了癫痫发作区!
- 批准号:
10664670 - 财政年份:2021
- 资助金额:
$ 36.21万 - 项目类别:
CRCNS: Following the BOLD lightening at rest strikes the seizure onset zone!
CRCNS:静止时的大胆闪电袭击了癫痫发作区!
- 批准号:
10676263 - 财政年份:2021
- 资助金额:
$ 36.21万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 36.21万 - 项目类别:
Research Grant