Ultrasound-Controlled Immunotherapy for Targeted Treatment of Solid Tumors
超声控制免疫疗法用于实体瘤的靶向治疗
基本信息
- 批准号:10399420
- 负责人:
- 金额:$ 5.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2023-06-14
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse effectsAnimal ModelAntigen TargetingBasic ScienceBlood VesselsCell TherapyCell physiologyCellsCellular immunotherapyCessation of lifeClinical TrialsCommunicationDNADataDevelopmentDiagnosticDisease modelERBB2 geneElementsEngineeringEnterobacteria phage P1 Cre recombinaseEnvironmentExposure toFeedbackFocused UltrasoundFocused Ultrasound TherapyFutureGene ExpressionGenesGeneticGoalsHeat-Shock ResponseHeatingHematologic NeoplasmsImmuneImmune systemImmunologyImmunomodulatorsImmunotherapyIn VitroInterleukin-2LifeLocationMalignant NeoplasmsMammalian CellMentorsMethodsModelingMusOncologyOperative Surgical ProceduresOrganismOutputPerformancePeripheralPharmaceutical PreparationsProductionProteinsResolutionSKBR3SafetySignal TransductionSolid NeoplasmStimulusStructure of parenchyma of lungSyndromeSynthetic GenesSystemT cell therapyT-LymphocyteTechniquesTechnologyTemperatureTestingTherapeuticTherapeutic AgentsTimeTissuesToxic effectTrainingTrans-ActivatorsTransgenesTranslational ResearchTumor AntigensWorkautocrinebasecancer immunotherapycancer therapycell typecellular engineeringchimeric antigen receptor T cellsclinical translationcytokinecytokine therapydesigndirect applicationengineered T cellsexperimental studygenetic elementimprovedin vitro testingin vivomillimetermouse modelmultidisciplinarynoveloperationoverexpressionprogramspromoterprotein expressionrecruitremote controlspatiotemporalsuccesssynthetic biologytargeted treatmenttherapeutic genetherapeutic proteintime usetooltumorultrasound
项目摘要
Project Summary
Advances in synthetic biology have enabled the development of increasing numbers of cell-based diagnostic
and therapeutic tools. However, controlling these cells in vivo is difficult and current methods to communicate
with engineered cells either suffer from poor spatiotemporal resolution or require invasive operations. In order to
improve safety and efficacy of cell-based therapies, robust methods to control gene expression in vivo are
required. Temperature is a unique communication signal as it can be modulated with millimeter precision deep
within tissues non-invasively using focused ultrasound (FUS). In addition, cells have already evolved the ability
to sense changes in temperature through heat shock promoters (HSPs). These genetic elements are ubiquitous
across organisms, providing a platform to develop genetic circuits that will activate upon FUS heating. Combining
the spatial control offered by FUS with cellular engineering to confer thermal sensitivity will allow us to create
thermally responsive cells that will activate in specific locations following FUS treatment.
One rapidly growing field that could benefit from spatially controlled gene expression is cell-based cancer
immunotherapy. Immunotherapy has recently emerged as a promising new class of cancer therapies with
transformative results in hematological malignancies. However, engineered cell-based immunotherapies such
as CAR T-cells and immunomodulatory agents such as cytokines must overcome significant challenges before
becoming more widely applicable for solid tumors. In recent clinical trials, CAR T-cells have attacked healthy
tissues if their targeted antigen is not tumor limited, resulting in massive peripheral toxicity and death. Systemic
cytokine therapy can also cause life-threatening adverse effects such as vascular leak syndrome. Both types of
immunotherapy could benefit from spatially controlled therapeutic expression.
This project’s overall goal is to develop HSP-driven circuits in primary T-cells that will allow thermal stimuli
delivered by FUS to active therapeutic genes expression. Initial experiments will focus on developing T-cells in
vitro that will respond to bulk heating by transiently releasing cytokine to boost CAR performance in an autocrine
fashion or activating permanent CAR expression specifically in the tumor. We will accomplish this by developing
HSP driven circuits that feature drug induced transactivators or Cre Recombinase. After validating these circuits
in vitro, we will test their performance upon FUS treatment in vivo using a murine SKBR3 tumor model and an
anti-HER2 CAR. This model will allow us to develop and demonstrate the performance of robust, FUS-activated
primary T-cells with two distinct payload outputs. This proposed approach represents a novel combination of
cellular engineering and therapeutic ultrasound to spatiotemporally control cell-based immunotherapies with
direct application to solid tumor treatment. This technology also has substantial potential for further development
and adaption to other cell types which may facilitate both basic science and translational research.
项目概要
合成生物学的进步使得越来越多的基于细胞的诊断方法得以发展
和治疗工具。然而,在体内控制这些细胞很困难,目前的通讯方法
工程细胞要么时空分辨率差,要么需要侵入性操作。为了
为了提高细胞疗法的安全性和有效性,控制体内基因表达的稳健方法是
必需的。温度是一种独特的通信信号,因为它可以进行毫米级精度深度调制
使用聚焦超声 (FUS) 在组织内进行非侵入性检测。此外,细胞已经进化出这种能力
通过热休克促进剂(HSP)感知温度变化。这些遗传因素无处不在
跨生物体,提供一个开发遗传电路的平台,该电路将在 FUS 加热时激活。组合
FUS 提供的空间控制与细胞工程赋予热敏感性将使我们能够创造
FUS 治疗后,热响应细胞将在特定位置激活。
细胞癌症是一个快速发展的领域,可以从空间控制的基因表达中受益
免疫疗法。免疫疗法最近已成为一种有前景的新型癌症疗法,
血液系统恶性肿瘤的变革性结果。然而,基于细胞的工程免疫疗法,例如
因为 CAR T 细胞和细胞因子等免疫调节剂必须克服重大挑战
越来越广泛地应用于实体瘤。在最近的临床试验中,CAR T细胞攻击健康
如果其靶向抗原不限于肿瘤,则会在组织中产生大量外周毒性和死亡。系统性
细胞因子治疗还可引起危及生命的不良反应,例如血管渗漏综合征。两种类型的
免疫疗法可以受益于空间控制的治疗表达。
该项目的总体目标是在原代 T 细胞中开发 HSP 驱动电路,以允许热刺激
由 FUS 传递至活性治疗基因表达。初步实验将集中于开发 T 细胞
体外,将通过瞬时释放细胞因子来响应大量加热,以提高自分泌中的 CAR 性能
时尚或激活肿瘤中的永久 CAR 表达。我们将通过开发来实现这一目标
HSP 驱动电路具有药物诱导的反式激活因子或 Cre 重组酶。验证这些电路后
在体外,我们将使用鼠 SKBR3 肿瘤模型和
抗HER2 CAR。该模型将使我们能够开发并展示强大的、FUS 激活的性能
具有两个不同有效负载输出的初级 T 细胞。这种提出的方法代表了一种新颖的组合
细胞工程和治疗超声来时空控制基于细胞的免疫疗法
直接应用于实体瘤治疗。该技术还具有进一步发展的巨大潜力
以及对其他细胞类型的适应,这可能会促进基础科学和转化研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Justin Lee其他文献
Justin Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Justin Lee', 18)}}的其他基金
Deciphering biased agonistic activation of mu-opioid receptor by novel optogenetic hydrogen peroxide sensor
新型光遗传学过氧化氢传感器破译μ阿片受体的偏向激动激活
- 批准号:
10604662 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
- 批准号:
23K15383 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
- 批准号:
23H03556 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
- 批准号:
23K17212 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
- 批准号:
22H03519 - 财政年份:2022
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
- 批准号:
563657-2021 - 财政年份:2022
- 资助金额:
$ 5.18万 - 项目类别:
Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
$ 5.18万 - 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10671022 - 财政年份:2022
- 资助金额:
$ 5.18万 - 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
- 批准号:
10670918 - 财政年份:2022
- 资助金额:
$ 5.18万 - 项目类别:
Adverse Effects of Using Laser Diagnostics in High-Speed Compressible Flows
在高速可压缩流中使用激光诊断的不利影响
- 批准号:
RGPIN-2018-04753 - 财政年份:2022
- 资助金额:
$ 5.18万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




