Nanocage-based systemic delivery of TGFβ trap for immunomodulation of brain neoplasms
基于 Nanocage 的 TGFβ 陷阱系统递送用于脑肿瘤的免疫调节
基本信息
- 批准号:10399979
- 负责人:
- 金额:$ 50.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdhesivesAffinityAllograftingAntibodiesAreaBindingBiodistributionBiologicalBloodBlood - brain barrier anatomyBlood CirculationBlood VesselsBrainBrain GlioblastomaBrain NeoplasmsCellsCellular SpheroidsChimeric ProteinsClinicalClinical ResearchClinical TrialsComplement Factor BDataDoseDrug KineticsEffectivenessEngineeringExhibitsExtracellular MatrixExtravasationFerritinFormulationGenesGlioblastomaGliomaHumanHybridsHypoxiaImmuneImmune checkpoint inhibitorImmune systemImmunocompetentImmunologic MemoryImmunosuppressionImmunotherapyIn VitroLeadMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of brainMasksMaximum Tolerated DoseMeasurableMediator of activation proteinMolecularMusNatureOutcomePatientsPenetrationPerformancePhysiologicalPilot ProjectsPlayPolyethylene GlycolsPopulation DistributionsPre-Clinical ModelPrimary Brain NeoplasmsProbabilityPropertyProteinsRecurrenceRefractoryReportingResortRoleSafetySeriesSignal TransductionSolid NeoplasmSpatial DistributionSurfaceTFRC geneTherapeuticTherapeutic EffectTissuesTransforming Growth Factor beta ReceptorsTransforming Growth FactorsTreatment EfficacyTumor TissueVariantXenograft procedureaggressive therapybaseblood-brain barrier penetrationbrain tissuecheckpoint inhibitionclinical efficacyclinically relevantdesignfight againsthuman modelimmunoregulationin vivoinhibitorinnovationmouse modelnanocageoptimismpatient derived xenograft modelpre-clinicalpreclinical studyprogrammed cell death protein 1prototypesealself assemblystandard of caresuccesstherapeutic developmenttumortumor hypoxiatumor microenvironmenttumor-immune system interactionsuptake
项目摘要
Project Summary
Most of the patients with malignant brain cancer or glioblastoma (GBM) do not live more than 20 months despite
highly aggressive treatments, and those who do have a very high probability of tumor recurrence. State-of-the-
art therapeutic strategies that instruct and/or help our body's immune system to fight against malignant cancers
have been recently introduced and hope has been provided by success in clinical studies targeting non-brain
cancers. However, this so-called immunotherapy, particularly checkpoint inhibition, has failed to show
measurable benefits among patients with brain cancers in a number of recent clinical trials. This disappointing
reality is largely attributed to the unique ability of brain cancers to resist immunotherapy or to suppress our
defensive immune system. Specifically, transforming growth factor β (TGFβ) is highly upregulated and plays
pivotal roles in promoting the immunosuppressive tumor microenvironment in a multi-pronged manner in GBM.
Thus, we hypothesize that TGFβ blockade would mask the tumor immuno-suppression, thereby rescuing
checkpoint inhibition as a viable and potent treatment for GBM. Indeed, the validity and potential impacts of this
combined approach have been preclinically demonstrated in multiple non-brain malignant solid tumors. However,
its realization in GBM is yet to be accomplished due to inability to achieve uniform and robust delivery of TGFβ
inhibitors throughout the brain tumor tissue, including the particularly immunosuppressive hypoxic tumor areas.
The tightly sealed blood-brain barrier (BBB) precludes extravasation of systemically-administered therapy into
the brain tissue. Once beyond the BBB, therapy must percolate the highly dense and adhesive tumor
extracellular matrix to spread throughout the tumor tissue and reach hypoxic tumor regions distanced from blood
vessels. To this end, we propose to develop and evaluate innovative human ferritin protein nanocage-based
delivery platform capable of overcoming these challenging biological barriers for widespread TGFβ blockade
throughout the brain tumor tissue following systemic administration. We recently demonstrated that our prototype
nanocage provides stable systemic circulation, efficient extravasation and tumor uptake, tumor tissue penetration
as well as accumulation in hypoxic tumor regions. In addition, our pilot study shows that the nanocage specifically
designed to carry TGFβ trap provides markedly enhanced ability to block the immunosuppressive TGFβ signaling
in vitro compared to the clinically-relevant anti-TGFβ antibody. We also provide a proof-of-concept evidence
suggesting that this nanocage enhances therapeutic efficacy of a clinically used checkpoint inhibitor in a mouse
model of GBM. We thus expect that TGFβ-antagonizing nanocages to be further developed in this proposal will
dismantle the notoriously immunosuppressive nature of GBM and thus make the otherwise refractory immune
checkpoint inhibition highly efficacious in eradicating malignant tumor tissues from the brain. The proposed
approach, if successful, will provide a breakthrough in treating GBM and potentially other hard-to-cure cancers
as well.
项目摘要
大多数患有恶性脑癌或胶质母细胞瘤(GBM)的患者活不到20个月
高度侵略性的治疗,以及那些确实有很高的肿瘤复发可能性的人。最新情况-
指导和/或帮助人体免疫系统对抗恶性肿瘤的ART治疗策略
最近被引入,而针对非大脑的临床研究的成功为人们提供了希望
癌症。然而,这种所谓的免疫疗法,特别是检查点抑制,并没有显示出
在最近的一些临床试验中,脑癌患者的益处是可衡量的。这令人失望
现实在很大程度上归因于脑癌抵抗免疫疗法或抑制我们的
防御性免疫系统。具体来说,转化生长因子β(转化生长因子β)被高度上调并发挥作用
在多管齐下促进免疫抑制的肿瘤微环境中发挥关键作用。
因此,我们假设,阻断转化生长因子β将掩盖肿瘤的免疫抑制,从而挽救
检查点抑制作为一种可行而有效的治疗GBM的方法。事实上,这一点的有效性和潜在影响
联合入路已在多发性非脑部恶性实体瘤的临床前得到证实。然而,
由于无法实现转化生长因子β的统一和健壮递送,其在GBM中的实现尚未完成
抑制剂遍布脑肿瘤组织,包括免疫抑制特别强的缺氧性肿瘤区域。
紧密封闭的血脑屏障(BBB)阻止了全身给药治疗的渗入。
脑组织。一旦超出血脑屏障,治疗必须渗入高度致密和粘连的肿瘤。
细胞外基质扩散到整个肿瘤组织并到达远离血液的缺氧肿瘤区域
船只。为此,我们建议开发和评估创新的人铁蛋白纳米笼基
能够克服这些具有挑战性的生物障碍的传递平台,以广泛阻断转化生长因子β
全身给药后遍及脑肿瘤组织。我们最近展示了我们的原型
纳米笼提供稳定的体循环,有效的渗出和肿瘤摄取,肿瘤组织穿透
以及在缺氧性肿瘤区域积聚。此外,我们的初步研究表明,纳米笼特别是
设计为携带转化生长因子β陷阱,显著增强了阻断免疫抑制转化生长因子β信号的能力
体外与临床相关的抗转化生长因子β抗体进行比较。我们还提供了概念验证证据
提示该纳米笼增强了临床使用的检查点抑制剂在小鼠身上的治疗效果
GBM模型。因此,我们预计在这项建议中将进一步开发抗转化生长因子β的纳米笼
消除GBM臭名昭著的免疫抑制特性,从而使原本难以治愈的免疫
检查点抑制在清除脑部恶性肿瘤组织方面非常有效。建议数
这种方法如果成功,将在治疗GBM和其他潜在的难以治愈的癌症方面取得突破
也是。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Lim其他文献
Michael Lim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Lim', 18)}}的其他基金
Targeting Lag-3 and PD -1 in Myeloid Cells of GBM
靶向 GBM 骨髓细胞中的 Lag-3 和 PD -1
- 批准号:
10367804 - 财政年份:2022
- 资助金额:
$ 50.6万 - 项目类别:
Targeting Lag-3 and PD -1 in Myeloid Cells of GBM
靶向 GBM 骨髓细胞中的 Lag-3 和 PD -1
- 批准号:
10598471 - 财政年份:2022
- 资助金额:
$ 50.6万 - 项目类别:
Nanocage-based systemic delivery of TGFβ trap for immunomodulation of brain neoplasms
基于 Nanocage 的 TGFβ 陷阱系统递送用于脑肿瘤的免疫调节
- 批准号:
10576313 - 财政年份:2021
- 资助金额:
$ 50.6万 - 项目类别:
Optimizing systemic immunotherapy for personalized brain metastasis treatment
优化全身免疫疗法以实现个性化脑转移治疗
- 批准号:
10272361 - 财政年份:2021
- 资助金额:
$ 50.6万 - 项目类别:
Optimizing systemic immunotherapy for personalized brain metastasis treatment
优化全身免疫疗法以实现个性化脑转移治疗
- 批准号:
10706497 - 财政年份:2021
- 资助金额:
$ 50.6万 - 项目类别:
Generating a Systemic Immune Response Using Localized Delivery of Chemotherapy in Brain Tumors
使用脑肿瘤局部化疗产生全身免疫反应
- 批准号:
10328420 - 财政年份:2019
- 资助金额:
$ 50.6万 - 项目类别:
Generating a Systemic Immune Response Using Localized Delivery of Chemotherapy in Brain Tumors
使用脑肿瘤局部化疗产生全身免疫反应
- 批准号:
10653808 - 财政年份:2019
- 资助金额:
$ 50.6万 - 项目类别:
Targeted Gene Delivery Against Glioblastoma multiforme
针对多形性胶质母细胞瘤的靶向基因递送
- 批准号:
6936404 - 财政年份:2005
- 资助金额:
$ 50.6万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 50.6万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 50.6万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 50.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 50.6万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 50.6万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 50.6万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 50.6万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 50.6万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 50.6万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 50.6万 - 项目类别:
Investment Accelerator














{{item.name}}会员




